
N_A _

National Aeronautics and

Space Administration i

Lyndon B. Johnson Space Center
Houston, Texas 77058

NASA CR-188269

\

\
\
\

\

SPACE GENERIC OPEN AVIONICS ARCHITECTURE

(SGOAA)

STANDARD SPECIFICATION

December1993

p,.
P,J

N
I

,4"
C_
Z

u5
m

U
¢:

Richard B. Wray
John R. Stovall

(This revision supersedes LESC-30354-A, issued March 1993)

Prepared by:

Lockheed Engineering & Sciences Company
Houston, Texas

Job Order 60-911
Contract NAS 9-17900

for

FLIGHT DATA SYSTEMS DIVISION
JOHNSON SPACE CENTER

LESC-30354-B

0
N
0

O"

en

jr

SPACE GENERIC OPEN AVIONICS ARCHITECTURE

(SGOAA)

STANDARD SPECIFICATION

December 1993

Richard B. Wray, Advanced Systems Engineering Specialist
John R. Stovall, Advanced Systems Engineering Specialist

APPROVED BY:

roject Inte _.t_ Spec=ahst D.M. Pruett, Manager, Advanced Programs
Filig"t [)ata S Flight Data Systems Division

Prepared by:

Lockheed Engineering & Sciences Company
Houston, Texas

Job Order 60-911
Contract NAS 9-17900

for

FLIGHT DATA SYSTEMS DIVISION
JOHNSON SPACE CENTER

LESC-30354-B

\
\

_ws

DOCUMENT CHANGE RECORD

The following table summarizes the change activity associated with this document.

ISSUE AND

DATE

CHANGE SUMMARY SECTION

-.._j

° D

! q"

p_,GE.-_ I_I"E;,LTt0_:AL,,Y;L;.;';_,

PRE_IIOH'4(_ PAGE I_LANK NOT F_.MED

PREFACE

This document has been produced by Mr. Richard B. Wray and Mr. John R. Stovall of

Lockheed Engineering and Sciences Company (LESC), the codevelopers of the avionics

architectures and standards represented in this document. The contributions of Mr. Ben

D0eckel of LESC who participated in early developFn-en-t of the concepts for th6-a_f|0hics

architectures and standards represented in this document is acknowledged. Special

acknowledgment is also given to Mr. Dave Pruett of the Johnson Space Center for his

support of the Advanced Architecture Analysis, assistance in the development of the

avionics architecture and constructive criticisms of the proposed standard.

_ i_¸

iv

M..,/

CONTENTS

Section Page

1. INTRODUCTION .. 1-1

1.1 SCOPE... 1-1

1.2 PURPOSE ... 1-1

1.3 APPLICATION GUIDANCE .. 1-1

1.4 BACKGROUND ... 1-2

2. APPLICABLE DOCUMENTS .. 2-1

2.1 STANDARDS ... :... 2.-1

2_2 SPECIFICATIONS .. 2.-1

2.2.1 GOVERNMENT SPECIFICATIONS ... 2-1

2.2.2 CONTRACTOR SPECIFICATIONS .. 2-1

2-3 OTHER PUBLICATIONS ... 2-1

3. DEFINITIONS .. 3-1

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

APPLICATION ... 3-1

APPLICATION PLATFORM ... 3-1

APPLICATION PROGRAM INTERFACE .. 3-1

APPLICATION SOFTWARE .. 3-1

ARCHITECTURE ... 3-1

AVAILABILITY ... 3-1

AVIONICS SYSTEM ... 3-2

COMMUNICATION INTERFACE .. 3-2

COMPONENT .. 3-2

CONTINUITY ... 3-2

CONTROL SYSTEM 3-2

CORE AVIONICS .. 3-3

Section Page

3.13 DATA ... 3-3

3.14 DATA BASE MANAGER .. 3-3

3.15 DATA PROCESSING SYSTEM ... 3-3

3.16 DATA SYSTEM 3-3

3.17 DATA SYSTEM SERVICES ... 3-3

3.18 DATA SYSTEM MANAGER .. 3-4

3.19 DECOMPOSABILITY ... 3-4

3.20 DEGRADED MODE ... 3-4

3.21 DEPENDABILITY .. 3-4

3.22 DIRECT INTERFACE ... 3-4

3.23 DISTRIBUTED SYSTEM ... 3-5

3.24 END-USER .. 3-5

3.25 ENTITY .. 3-5

3.26 ERROR ... 3-5

3.27 ERROR PROCESSING .. 3-5

3.28 EXTERNAL ENVIRONMENT ... 3-5

3.29 EXTERNAL ENVIRONMENT INTERFACE ... 3-6

3.30 EXTENSIBILITY ... 3-6

3.31 FAILURE ... 3-6

3.32 FAULT ... 3-6

3.33 FAULT TOLERANCE .. 3-6

3.34 FAULT TREATMENT .. 3-6

3.35 FLIGHT CRITICAL FUNCTION/INTERFACE ... 3-7

3.36 FUNCTION ... 3-7

3.37 GENERIC ARCH_ECTURE .. 3-7
M.#

vi

Section

3.38

3.39

3.40

3.41

3.42

3.43

3.44

3.45

3.46

_ 3.47

3.48

3.49

3.50

3.51

3.52

3.53

3.54

3.55

3.56

3.57

3.58

3.59

3.60

3.61

3.62

Page

HUMAN/COMPUTER INTERFACE .. 3-7

INTERFACE .. 3-7

INTEROPERABILITY .. 3-7

LOGICAL INTERFACE ... 3-8

MISSION CRITICAL FUNCTION/INTERFACE .. 3-8

MF_SION READY MODE ... 3-8

MODE ... 3-8

MODULAR ARCHITECTURE .. 3-8

NETWORK SERVICES MANAGER ... 3-9

OBIECT...3-9

ONBOARD HEALTH MANAGEMENT .. 3-9

OPEN FORUM, 3-9

OPEN SPECIFICATION .. 3-9

OPEN SYSTEM ... 3-9

OPEN SYSTEM INTERFACE STANDARDS ... 3-10

OPEN SYSTEM APPLICATION PROGRAM INTERFACE 3-10

OPEN SYSTEMS ARCHITECTURE ... 3-10

OPEN SYSTEM ENVIRONMENT .. 3-10

OPERATING SYSTEM ... 3-10

OPERATIONALLY READY MODE .. 3-11

PLATFORM ... 3-11

PORTABILITY .. 3-11

PROTABILITY ... 3-11

PROTECTION , .. 3-11

RED-TAGGED MODE ... 3-11

vii

Section

.

Page

3.63 RELIABILITY ..3-11

3.64 REQUIREMENTS ARCHITECTURE ..3-12

3.65 RQBUSTNESS ..3-12

3.66 SAFETY CRITICAL FUNCTION ..3-12

3.67 SERVICE ..3-12

3.68 SERVICE SUBSYSTEM ...3-12

3.69 SOFTWARE ..3-12

3.70 SOURCE .. 3-12

3.71 SPACE DATA SYSTEM .. 3-12

3.72 SPACE DATA SYSTEM SERVICES (SDSS) 3-13

3.73 SPACE ..GENERIC OPEN AVIONICS ARCHITECTURE (SGOAA) 3-13

3.74 rNPUT/OUTPVr DATA SERVICES MANAGER ... 3-13

3.75 STANDARD ... 3-13

3.76 STANDARDIZED PROFILE .. 3-13

3.77 SYSTEM ... 3-13

3.78 SYSTEM HARDWARE ARCHITECTURE. .. 3-14

3.79 SYSTEM SOFTWARE ARCHITECTURE ... 3-14

3.80 SYSTEM SERVICES SOFTWARE ..3-14

3.81 TASK ..3-14

3.82 UNDERSTANDABILITY ... 3-14

3.83 USE._____RR.. _........................ 3-14

GENERAL REQUIREMENTS ... 4-1

4.1 OPEN SYSTEMS REQUIREMENTS ... i' 4-1

4.2 LOWER LEVEL STANDARDS SELECTION ... 4-1

_j

Section

4.3

.

Page

ARCHITECTURE FEATURES .. 4-3

4.3.1 REQUIREMENTS ARCHITECTURE ... 4-3

4.3.2 CRITICAL INTERFACES .. 4-3
=

4.3.3 NON-CRITICAL INTERFACES .. 4-4

4.3.4 RESOURCE CONTROL ... 4-4

4.3.5 COMMONALITY .. 4-4

4.3.6 INTERFACE STANDARDIZATION ... 4-4

: 4.3.7 CREW OVERRIDE .. 4-4

4.3.8 ON'BOARD HEAL_ _NAGER ... 4-5

4,3.9 DATA SYSTEM SERVICES .. 4,-6

4.3.10 GROWTH AND SPARE CAPACITY ... 4-6

4.3.11 MODULARITY .. 4-6

4.3.12 SERVICE TRANSPARENCY ... 4-6

4.3.13 TECHNOLOGY TRANSPARENCY .. 4-6

4.3.14 INTEROPERABILITY .. 4-6

4.3.15 DEPENDABILITY ... 4-6

4.3.15.1 Availability .. 4-7

4.3.15.2 Reliability ... i......... 4-7

4.3.15.3 f_.Le_Y ... 4-7

4.3.15.4 Security ... 4-7

ARCHITECTURE INTERFACE DETAILED REQUIREMENTS 5-1

5.1 SYSTEM ARCHITECTURE REOUTREMENT$... 5-1

5.2 ARCHITECTURE INTERFACE MOD.EL REOUTREMENT$ 5-4

5.2.1 CLASS 1 - HARDWARE-TO-HARDWARE DIRECT INTERFACE

REQUIREMENTS ... 5-7

ix

Section

5.2.2

5.2.3

5.2.4

5.2.5

5.2.6

Page

5.2.1.1 Interface Architecture .. 5-7

5.2.1.2 Generic Processing External Hardware Architecture 5-9

5.2.1.3 General Avionics Processor Internal Hardware

Architecture ... 5-12

CLASS 2 - HARDWARE-TO-OPERATING SYSTEM EXTENSION

SOFTWARE DIRECT INTERFACE REQUIREMENTS 5-14

5.2.2.1 Error Processing .. 5-14

5.2.2.2 System Services Software ... 5-16

5.2.2.3 Hardware Operating System Extension Interfaces 5-16

CLASS 3 - OPERATING SYSTEM SERVICES SOFTWARE-TO-

SOFTWARE (LOCAL) DIRECT INTERFACE REQUIREMENTS 5-16

5.2.3.1 Local Software Service Grouping ... 5-16

5.2.3.2 Class 3 FlightSafety and Mission Critical Interfaces 5-19

5.2.3.3 Class 3 Operating System Interfaces 5-19

CLASS 4 - DATA SYSTEM SERVICES SOFTWARE-TO-DATA

SYSTEM SERVICES SOFTWARE LOGICAL INTERFACE

REQUIREMENTS ... 5-19

5.2.4.1 Class 4 Critical Function Error Processing 5-22

5.2.4.2 Class 4 Data System Services Interfaces 5-22

CLASS 5 - DATA SYSTEM SERVICES SOFTWARE-TO-

APPLICATIONS SOFTWARE (LOCAL) DIRECT INTERFACE

REQUIREMENTS .. 5-22

5.2.5.1 Class 5 Error Processing ... 5-22

5.2.5.2 Services to Applications Interfaces ... 5-25

CLASS 6 - APPLICATIONS SOFTWARE-TO-APPLICATIONS

SOFTWARE (LOGICAL) INTERFACE REQUIREMENTS 5-25

5.2.6.1 Class 6 Error Processing ... 5-25

5.2.6.2 A._vplicationsto Applications Interfaces 5-25

_.._j

_Lj

Section

5.3

.

Page

DATA SYSTEM SERVICE ARCHITECTURAL REQUIREMENT_ 5-28

5.3.1 INPUT/OUTPUT DATA SERVICES MANAGEMENT 5-28

5.3.2 DATA SYSTEM MANAGEMENT .. 5-32

5.3.3 NETWORK SERVICES MANAGEMENT .. 5-32

5.3.4 DATA BASE MANAGEMENT ... 5-32

5.3.5 OPERATING SYSTEM .. 5-32

NOTES ... 6-1

6.1 AVIONICS SYSTEM NOTES .. 6-1

6.1.1 AVIONICS GENERAL .. 6-1

6.1.2 MODES .. 6-1

6.1.3 ARCHITECTURE INTERFACE MODEL ... 6-1

REQUIREMENTS NOTES .. 6-1

6.2.1 DATA PROCESSING SUBSYSTEM ... 6-1

6.2.2 INTERSYSTEM APPLICATIONS INTERFACE 6-3

6.2.3 CONTROL SUBSYSTEM .. 6-3

6.2.4 MODULAR ARCHITECTURE ... 6-3

6.2.5 DIRECT INTERFACE ... 6-3

REOUIREMENTS CHARACTERISTICS DESIRED .. 6-3

6.2

6.3

6.3.1

6.3.2

6.3.3

6.3.4

6.3.5

6.3.6

ROBUSTNESS 6-3

SYSTEM SERVICES SOFTWARE ... 6-3

SERVICE FUNCTIONS ... 6-4

TAILORING ... 6-4

SYSTEM CHARACTERISTICS .. 6-4

ONBOARD HEALTH MANAGEMENT ... 6-4

xi

Section

6.4

Page

ARCHwECTURAL CHARACTERISTICS DESIRED. _...iii.,".. 6-5

6.4.1 SYSTEM SOFTWARE ARCHITECTURE .. 6-5

6.4.2 APPLICATION PLATFORM .. 6-5

6.4.3 APPLICATION PROGRAM INTERFACE ... 6-5

6.4.4 ARCHITECTURE LOCATION INDEPENDENCE 6-5

6.4.5 FAULT TOLERANCE TRANSPARENCY .. 6-5

6.4.6 ADAPTABLE REDUNDANCY ... 6-5

6.5 DIRECT AND LOGICAL INTERFACE NOTES ... 6-6

6.5.1 CLASS 2 DIRECT INTERFACE .. 6-6

6.5.2 HEALTH MANAGEMENT INTERFACE ... 6-6

6.5.3 CLASS 4 LOGICAL INTERFACE ... 6-6

6.5.4 CLASS 5 DIRECT INTERFACES .. 6-6

6.5.5 CLASS 6 LOGICAL INTERFACES .. 6-7

6.6 IMPLEMENTATION (_HARACTERISTIC$.. 6-7

6.6.1 ARCHITECTURE SCALEABILITY .. 6-7

6.6.2 ARCHITECTURE RECURSIVENESS ... 6-7

6.6.3 ARCHITECTLTRE TARGET DEVELOPMENT 6-9

6.7 TERMINOLOGY NOTES ... 6-9

6.8 PURPOSE OF PROFILES .. 6-12

6.9 BIBLIOGRAPHY OF USEFUL DOCUMENTS ... 6-12

V

xii

V

TABLES

Table Page

5-! Architectural Interface Classes5-6

x_i

Figure

4-1

5-1

5-2

5-3

5-4

5-5

5-6

5-7

5-8

5-9

5-10

5-11

5-12

5-13

5-14

5-15

5-16

5-17

5-18

6-1

6-2

6-3

6-4

FIGURES

Page

SCOAA Functional Interfaces .. 4-2

Logical System Requirements Flowdown to Direct Design Requirements 5-2

System Architecture .. 5-3

Reference Architecture Interface Model ... 5-5

Class I Hardware to Hardware Direct Interfaces ... 5-8

Generic Processing External Hardware Architecture and Interfaces for a

Space Generic Open Avionics Architecture .. 5-10

Generic Processing Internal Hardware Architecture ... 5-13

Class 2 Hardware-to-System Software Direct Interfaces .. 5-15

GAP to Hardware Drivers .. 5-17

Class 3 System Software-to-System Software Direct Interfaces 5-18

Operating System Interfaces .. 5-20

Class 4 System Software-to-System Software Logical Interfaces 5-21

SDSS Services to Other or Remote Services .. 5-23

Class 5 System Software-to-Applications Software Direct Interfaces 5-24

Services to Applications Interfaces .. 5-26

Class 6 Applications Software-to-Applications Software Logical Interfaces 5-27

Class 6 System A Software-to-System B Software Logical Interfaces 5-29

Data System Services Architectural Interface Elements 5-30

Interface Service Elements .. 5-31

Generic Avionics Architecture Interface Model ... 6-2

The Generic System Architecture Model is Scaleable ... 6-8

The Generic Architecture Interface Model is Recursive ... 6-10

The Interface Model Applies to Both Target and Host Development
Environments .. 6-11

v

xiv

AP

API

BIT

BITE

C&T

EE

EEI

EIA

FB+

FDDI

GAP

GN&C

lgO

ISA

IOSM

JSC

LESC

NSM

OS

OSE

OSI

POSIX

RTE

ACRONYMS

Application Platform

Application Program Interface

Built-In-Test

Built-In-Test Equipment

Communications and Tracking

External Environment

External Environment Interface

Electronics Industries Association

Embedded Processor

Future Bus Plus

Fiber Data Distribution Interface

General Avionics Processor

Guidance, Navigation and Control

Input/Output

Instruction Set Architecture

Input/Output Data Services Manager

Johnson Space Center

Lockheed Engineering & Sciences Company

Network Services Manager

Operating System

Open System Environment

Open Systems Interconnect

Portable Operating System Interface

Run Time Environment

xv

SAP

SDS

SDSS

SGOAA

Special Avionics Processor

Space Data System

Space Data System Services

Space Generic Open Avionics Architecture

V

XVI

Jv

1. INTRODUCTION

1.1 SCOPE

This standard establishes a Space Generic Open Avionics Architecture (SGOAA) interface

model and the requirements for applying this model to the development of spacecraft core

avionics systems. (This version of the SGOAA standard primarily addresses the general

avionics processors and their interfaces. Internal interfaces for special avionics processors

and embedded processors require further definition.)

1.2 PURPOSE

The purpose of this standard is to provide an umbrella set of requirements for applying the

generic architecture interface model to the design of a specific avionics hardware/software

system. This standard defines a generic set of system interface points to facilitate

identification of critical interfaces and establishes the requirements for applying appropriate

low level detailed implementation standards to those interfaces points. The generic core

avionics system and processing architecture models provided herein are robustly tailorable

to specific system applications and provide a platform upon which the interface model is to

be applied.

1.3 ApPLIOATION GUIDANCE

This standard is intended to be used by both avionics system designers and avionics system

implementors in the development of open systems architectures for avionics. The system

under design shall be expressed in the context of the System Architecture and Generic

Processing Architecture as defined in Sections 5.1 and 5.2.1.2 respectively of this standard.

The Architecture Interface Model shall be directly applied to identify the specific interfaces

requiring application of lower level standards. The selection of specific lower level

standards is dependent upon unique system requirements, but shall be conducted in

accordance with the guidelines provided in Section 4.2.

This architecture is scaleable and recursive, and can be applied to any hierarchical level of

hardware/software processing system, as discussed in Section 6.6.

1-1

1.4 BACKGROUND

Development of a SGOAA that satisfies the Portable Operating System Interface (POSIX)

reference model [POSIX91], the Open System Interconnect (OSI) reference model [ISO7498]

and the definition of an open system architecture was initiated to aid in providing the

following benefits to future space programs:

• Provide the basis for establishing a set of specifications, standards and procedures

that will become common to all systems used in simultaneously operational

missions, e.g., to simplify interfaces between multiple vehicles (such as the

shuttle and station) when performing a joint mission such as docking.

• Ensure that future avionics systems can be upgraded and maintained with

minimal redesign impact to the existing avionics system by establishing the

interfaces required to enable modular replacement of hardware and software.

• Promote availability of multiple sources of needed avionics software and

hardware by defining standard interfaces.

• Provide a pool of hardware and software modules for multiple program re-use by

defining standard interfaces and promoting hardware and software reuse and

commonality.

• Insure access to the architecture and its design documentation for any vendor or

agency desiring to propose new uses and applications, and to facilitate

competition to contain cost growth.

A complete description of the SGOAA development model, technical considerations and

application examples is contained in the technical guide [WRA93].

V

1-2

2. APPLICABLE DOCUMENTS

The following documents provide additional supplemental material applicable to this

standard. They provide additional requirements or expand on requirements from this

standard for generic open architectures.

2.1 _TANDARDS

[ISO7498] "Information Processing Systems - Open Systems Interconnection - Basic

Reference Model", First Edition, International Standards Organization,

October 1984.

[POSIX91] "Draft Guide to the POSIX Open Systems Environment", P1003.0/D14,

IEEE Computer Society, November 1991.

[SYSB-1] "Systems Engineering", EIA Engineering Bulletin SYSB-1, Electronics

Industries Association (EIA), December 1989.

2.2 _PE(_IFI(_ATIONS

2.2.1 GOVERNMENT SPECIFICATIONS

[JSC 31000] Space Station Projects Description and Requirements Document, Vol. 3,

Rev G, 4 April 1991.

[SSP 30235] Space Station Program Glossary, Acronyms and Abbreviations, CR

BB007008A, No date

[PAVE PILLAR] "Architecture Specification for PAVE PILLAR Avionics", SPA-90099001A,

Aeronautical Systems Division, USAF, January 1987.

2.2.2 CONTRACTOR SPECIFICATIONS

2.3 OTHER

[BOE91]

[tKX)CH871

PUBLICATIONS

Flanagan, Rich and Van Ausdal, Art, "SATWG Flight Data System

Architecture Specification Outline" briefing, 25 October 1991

Booch, Grady, "Software Engineering with Ada", 2nd Edition, Benjamin

Cummings Publishing Comp., 1987.

2-1

[GD90A]

[LAPg0]

[WRA93]

General Dynamics "Space Avionics Requirements Study", 21 October 1990,

Contract NAS8-37588, TD006 Presentation Package, as briefed to the

SATWG

Laprie, J. C., "Dependability: Basic Concepts and Terminology", J. C. Laprie

- Editor, Published by International Federation for Information Processing

(IFIP) Working Group 10.4 on Dependable Computing and Fault

Tolerance, December 1990.

Wray, R. B. and Stovall, J. R., "Space Generic Open Avionics Architecture

(SGOAA) Reference Model Technical Guide", Job Order 60-430, Contract

NAS9-17900 for the JSC, NASA CR-188246, LESC-30347-A, April 1993.

2-2

3. DEFINITIONS

Definitions are taken from the [POSIX91] or [LAP90] where applicable or otherwise

established as shown.

3.1 APPLICATION

Application is defined as the use of capabilities (services/functions) provided by an

information system specific to the satisfaction of a set of user requirements. [POSIX91]

3.2 APPLICATION PLATFORM

Application Platform (AP) is defined as the set of resources that supports the services on

which an application or application software will run. Also known as a host platform.

[POSIX911

J

3.3 APPLICATION PROGRAM INTERFACE

Application Program Interface (API) is defined as the interface between the application

software and the application platform, across which all services are provided. [POSIX91]

3.4 APPLICATION SOFTWARE

Application Software is defined as software that is specific to an application and is composed

of programs, data and documentation. Application software has uniquely defined

interfaces. [POSIX91]

3.5 ARCHITECTURE

Architec_reisd_ined_rth_standardasthe struct_eofApplicationSo_ware, API, AP,

and ExtemaIEnvironmentInter_ces _EIs) wh_hdescr_etheorgani_tionandinterfaces

ofas_tem.

3.6 AVAILABILITY

Availability is a measure of the probability that a designated system will delivery the correct

service when called upon at any random point in time. [Adapted from LAP90}

3-1

3.7 AVIONICS SYSTEM

Avionics System is defined for the purpose of this standard as the set of all electronic and

processing based subsystems on a space vehicle, including all hardware, software and other

electronics needed to control and operate the space vehicle. It is the collection of system

elements and allocated capabilities that provides the coordinated functionality for end-to-

end processing in handling the information needed to interface the space vehicle's major

components, to control its interaction with its environment, and to respond to human

commands. (Adapted from [JSC 31000])

3.8 (_OMMUNI(_ATION INTERFACE

Communication Interface is defined as the boundary between application software and the

external environment, such as application software on other host platforms, external data

transport facilities and devices. The communications interface may be internal to one space

vehicle or across multiple space vehicles. [POSIX91]

The services provided are those whose protocol state, syntax and format all must be

standardized for interoperability.

3.9 IPLO.I_O.IKF, I_

Component is one of the parts resulting when an entity is decomposed into constituent

parts.

3.10 CONTINUITY

Continuity is defined to mean that requirements changes are proportional to design

changes, i.e., that changes in the requirements will propagate into changes of the same order

of magnitude in the design.

3.11 CONTROL SYSTEM

Control Subsystem is an application which selects and implements alternative actions based

on a-priori criteria or real time guidance.

3-2

3.12 CORE AVIONICS

Core Avionics is defined as the control subsystems and the supporting avionics (hardware

and software) needed to enable these control subsystems to function. Core avionics include

the controls for each of the traditional space avionics hardware subsystems (such as

Guidance Navigation and Control (GN&C) and Communications and Tracking (C&T)).

The avionics hardware sensors and effectors are outside the core avionics boundary.

3.13 DATA

Data are the sensor outputs to the system, input to applications from the system, output

from applications to the system, input to crew or operations control elements from the

system, outputs from crew or operations control elements to the system. Data may include

commands.

3.14 DATA BASE MANAGER

Data Base Manager is the control subsystem which manages structured data files, file

transfers and file redundancy management.

3.15 DATA PRO(_ESSING SYSTEM

Data Processing Subsystem is an application subsystem providing data processing services.

Data processing subsystems do not perform control subsystem functions.

3.16 DATA SYSTEM

Data System (for example the Space Data System - (SDS)) is a network of data system

services, onboard computational resources, data storage, and human-machine interface

devices which provide onboard command and control, data transmission,

computation/processing, and operating application software to support a space vehicle's

users (crew and controllers), interfacing systems, applications and subsystems.

3.17 DATA SYSTEM _ERVICES

Data System Services (for example the Space Data System Services - (SDSS)) is a service

subsystem with a generic functional architecture designed to provide a comprehensive set

of services to all vehicles and subsystems.

3-3

3.18 DATA SYSTEM MANAGER

Data System Manager is the control subsystem which manages the housekeeping and status

control services for the SDSS.

3.19 DE(_OMPOSABILITY

Decomposability is defined to mean requirements can be broken into smaller pieces with

potentially simpler solutions or at least better understanding and a capability for further

decomposition as needed.

3.20 DEGRADED MODE

Degraded mode is a system condition wherein some system elements (such as hardware,

software, human, or procedural) are sufficiently unhealthy that the system cannot operate

normally.

3.21 DEPENDABILITY

Dependability is defined as the trustworthiness of an avionic system such that reliance can

justifiably be placed on the service it delivers. Depending on the application(s) intended for

the system, different emphasis may be put on different facets of dependability, i.e.

dependability may be viewed according to different, but complementary, properties, which

enable the attributes of dependability to be defined:

• with respect to the readiness for usage, dependable means available;

• with respect to the continuity of service, dependable means reliable;

• with respect to the avoidance of catastrophic consequences on the environment,

dependable means safe;

• with respect to the prevention of unauthorized access and/or handling of

information, dependable means secure. (Derived from [LAIX)0]).

3.22 DIRECT INTERFACE

Direct Interface is defined as the connection between an entity sending or receiving data

with another entity receiving or sending data for transmission of the same data along the

routing path associated with moving data from the source of the data to the end user of the

3-4

data. Data is used by an entity in a direct manner if it passes the data on without changing

the data; thus, for example, network operating systems are direct interfaces between

applications when they package or unpack data and send it to another network node.

3,23 ._ SYSTEM

Distributed System is a collection of computers, memories, buses and networks that are

concurrently operating in a cooperative manner and communicating with each other.

3,24 -j_

End-user of data is the last entity which makes a significant transformation, conversion or

operation on the data.

3.25 ENTITY

Entity is an abstract element that represents an object in the real world, its data attributes

and essential services with their respective performance and quality characteristics.

3.26 ERROR

Error is defined to be that part of the system state which is liable to lead to subsequent

failure. [LAP90]

3,27 ERROR PROCESSING

Error Processing is defined to be the actions taken in order to eliminate errors from a

system. Error processing is error detection followed by either error recovery or error

compensation. Error recovery replaces an error-free state for the erroneous one. Error

compensation uses the redundancy of the state to enable the delivery of an error free service

from the erroneous (internal) state. [LAPg0]

3.28 _ ENVIRONMENT

External Environment (EE) is defined as a set of external entities with which the application

platform exchanges information. These entities are classified into the general categories of

human users, information interchange entities and communication entities. [POSIX91]

3-5

3.29 EXTERNAL ENVIRONMENT INTERFACE

External Environment Interface (EEI) is defined as the interface between the application

platforrn and the EE across which information is exchanged. The EEI is defined prLmarily in

support of system and application interoperabi]ity. This interface consists of

human/computer interaction services, information services, and communications services.

[Pos]x91]

V

3.30 EXTENSIBILITY

Extensibility is the ability of an architecture to be extended or adapted to new conditions,

changes in specifications or new technologies.

3.31 FAILURE

Failure is defined as a deviation of the delivered service from the specified service, where

the service specification is an agreed description of the expected function and/or service.

 AF90]

3.32 FAULT

Fault is defined as the adjudged or hypothesized cause of an error. [LAP90]

3.33 FAULT TOLERANCE

Fault Tolerance is defined as providing a service complying with the specification in spite of

faults. Fault tolerance is carried out by error processing and fault treatment. Error

processing is aimed at removing errors from the system state, if possible before failure

occurrence; fault treatment is aimed at preventing faults from being activated -- again.

[LAPg0]

3.34 FAULT TREATMENT

Fault Treatment is defined to be the actions taken in order to prevent a fault from being re-

activated. The first step in fault treatment is fault diagnosis, which consists of determining

the cause(s) of error(s), in terms of both location and nature. This is followed by fault

passivation, which prevents the fault from being activated again. If the system is no longer

3-6

capableof delivering the sameserviceasbefore, thena reconfigurationmay take place.

[LAI_]

3.35 FLIGHT CRITICAL FUNCTION/INTERFACE

Flight Critical Function is a function or interface which, if it fails, could cause loss of vehicle

control resulting in loss of the vehicle and, if present, crew. The function or interface is

characterized by the presence of hard deadlines (usually in the range of milliseconds), where

missing a deadline is a failure.

3.36 FUNCTION

Function is an action/task that the system must perform to satisfy customer and end user

needs. Control of mission critical functions may require hard deadlines, where missing a

deadline is a failure.

3.37 _ ARCHITECTURE

Generic Architecture is an architecture where the elements of the architecture do not

depend on any one mission or program for their defnition. The elements of a generic

architecture can be tailored to apply to many different missions and programs.

3.38 HUMAN/COMPUTER

Human/Computer Interface is the boundary across which direct interaction between a

human being and the application platform take place.

3.39

Interface is the shared boundary between two functional units, defined by functional and

other physical characteristics, as appropriate.

3.40 INTEROPERABILITY

Interoperability is defined as the ability of two or more systems to exchange information

and to mutually use the information that has been exchanged. [POSIX91]

3-7

3.41 LOGICAL INTERFA(_i_

Logical Interface is defined as the requirements associated with establishing a data

interchange interface between a source of data and the end user of the data. The end u_er of

the data must be identified to include the requirements for the data and the

supplying the data must also be identified. Data routing is transparent to logical interface

entities. Routing of the data should not be a concern to the source and end user because the

routing (i.e., direct requirements) is transparent to these entities.

3.42 MISSION CRITICAL FUNCTION/INTERFACE

Mission Critical Function or Interface is any function or interface which, if it fails, results in

an incomplete mission, a mission abort or a loss of payload.

3.43 MISSION READY MODE

Mission Ready Mode is a system condition wherein all system elements, including

hardware, software, human and procedural, are available to enable the system to perform

its intended function and the current mission for which it is intended.

3.44 MODE

Mode is a predefined set of hardware and software configurations, and associated

procedures used to organize and manage the conditions of operation for an avionics

system's behavior, as planned, pre-planned or directed by a human.

V

3.45 MODULAR AR(_HITECTURE

Modular Architecture is an architecture composed of discrete components such that the

design of one component depends only on the interface to other components, not on their

internal design. A modular architecture is decomposable, understandable, protected, has

continuity and is organized in a robust structure. It is desirable that a change in one

component has minimal impact on other components. (Adapted from [SSP 30235]).

3-8

3.46 NETWORK SERVICES MANAGER

Network Services Manager (NSM) is a control subsystem which manages peer-to-peer

communication between application software running on distributed processing elements

communicating over a network.

3.47 OBJECT

Object is something perceptible to the sense of vision or touch or to the mind.

3.48 ONBQARD HEALTH MANAGEMENT

Onboard Health Management is defined as the hardware and software used to monitor and

control on board Avionics System resources to prevent or respond to system failure. This

includes the ability to efficiently monitor, checkout, and test the Avionics System, Core

Avionics, and related non-avionics subsystems before, during, and after operation, as

applicable. Onboard health management supports, as required, reconfiguration of Avionics

System resources to prevent catastrophic failure.

3.49 OPEN FORUM

Open Forum is defined as the review of a subject in a public consensus process.

3.50 OPEN SPECIFICATION

Open Specifications are defined as public specifications that are maintained by an open,

public consensus process to accommodate new technologies over time and that are

consistent with international standards. The public consensus process for open

specifications must be maintained and accepted by an open forum. [POSIX91]

3.51 OPEN SYSTEM

Open System is defined as a system that implements sufficient open specifications for

interfaces, services, and supporting formats to enable properly engineered application

software: [POSIX91]

• to be ported with minimal changes across a wide range of systems

• to interoperate with other applications on local and remote systems

• to interact with users in a style that facilitates user portability

3-9

3.52 OPEN SYSTEM INTI_RFACE STANDARDS

Open System Interface Standards are standards that provide for open specifications of open

systems.

3.53 OPEN SYSTEM APPLICATION PROGRAM INTERFACE

Open System Application Program Interface is defined as a combination of standards-based

interfaces specifying a complete interface between application software and the underlying

application platform. This is divided into the following parts: [POSIX91]

• Human/Computer Interaction Services API

° Information Services API

• Communication Services API

° System Services API

3.54 OPEN SYSTEMS ,ARCHITECTURE

Open Systems Architecture is defined as an architecture for an open system using open

specifications. It consists of a structure of interconnected functional subsystems (i.e., black

boxes) using non-proprietary communications, based on open specifications for interfaces,

and providing high level standard services. The interface between the application software

and the underlying application platform must be based on an Open System Application

Program Interface. To be open, the architecture must be extensible through the addition of

subsystems, services and resources following open specification rules.

V

3.55 OPEN SYSTEM ENVIRONMENT

Open System Environment (OSE) is defined as the comprehensive set of interfaces, services

and supporting formats, plus user aspects for interoperability or for portability of applica-

tions, data, or people, as specified by information technology standards and profiles.

[POSIX91]

3.56 OPERATING SYSTEM

Operating System (OS) is the layer of software that isolates services and application software

from the application platform hardware element. The OS provides services for at least

management, allocation, and deallocation of the processor, memory, timing and

input/output (I/O) processing resources for application and service software.
V

3-10

3.57 OPERATIONALLY READY MODE

Operationally Ready mode is a system condition wherein most system hardware, software,

human and procedural elements are functioning correctly, but not all subsystems are

configured as needed for a mission to be performed.

3.58 PLATFORM

See Application Platform definition.

3.59 PORTABILITY

Portability is defined as the ease with which software can be transferred from one platform,

application or information system to another. [POSIX91]

3.60 PROFILING

Profiling is the process of selecting a set of one or more base standards, and where

applicable, the identification of chosen classes, subsets, options, and parameters of those base

standards, necessary for accomplishing a particular function. (The profile selection process

is discussed in section 6 of [POSIX91]).

3.61 pROTECTION

Protection is defined to mean that the architecture will limit the effect of abnormal

conditions in design elements at run-time to just the affected modules or as a minimum

will limit the propagation of abnormal conditions.

3.62 -_r.J_T. __G_ __. MODE

Red-tagged mode is a system condition wherein sufficient system hardware, software,

human or procedural elements are failed that the system cannot operate at all.

3.63 RELIABILITY

Reliability is a measure of the probability that an item will deliver the correct service under

specified conditions without failure, for a specified period of time.

3-11

3.64 REQUIREMENTS ARCHITECTURE

Requirements Architecture is an architecture that can be tailored for design implementa-

tion based on actual system requirements.

V

3.65 ROBUSTNESS

Robustness is the measure of a system's ability to support continued functioning under

abnormal operating conditions.

3.66 SAFETY CRITICAL FUNCTION

Safety Critical Function is any function which has an associated condition, event, operation,

process, equipment or system (including software) with the potential for catastrophic injury

or damage to onboard systems, life, or environment. (adapted from [SSP 30235] and [LApC_].

3.67 SERVICE

Service delivered by a system is its behavior as it is perceived by its user(s).

3.68 SERVICE SUBSYSTEM

Service Subsystem is service software on an application platform, which provides

transparent services to the using control or data processing subsystem.

V

3.69 SOFTWARE

Software is defined as the programs, procedures, rules, and any associated documentation

pertaining to the operation of a data processing system. [POSIX91]

3.70 SOURCE

Source is the originator of data passed across a logical interface.

3.71 SPACE DATA SYSTEM

See Data System definition.

%J

3-12

3.72 SPACE DATA SYSTEM SERVICES (SDSS)

See Data System Services definition.

3.73 SPACE GENERIC OPEN AVIONICS AR(_HITECTURE fSGOAA}

SGOAA is defined as the target open architecture standard being developed to provide an

umbrella set of requirements for applying a generic architecture interface model to the

design of specific avionics hardware/software systems. This standard defines a generic set of

system interface points and establishes the requirements for applying appropriate low level

detailed implementation standards to those interfaces points. The generic core avionics

system and processing hardware architecture models provided by the standard are robustly

tailorable to specific system applications and provide a platform upon which the generic

interface model is to be applied.

3.74 INPUT/OUTPUT DATA SERVICES MANAGER

Input/Output Data Services Manager is the interface handling subsystem that manages the

services that process requests for interaction between sensors, effectors, application software

and other services.

3.75 STANDARD

Standard is a document established by consensus and approved by a recognized body, that

provides, for common and repeated use, rules, guidelines, or characteristics for activities or

their results, aimed at the achievement of the maximum degree of order in a given context.

3.76 STANDARDIZED PROFILE

Standardized Profile is defined as a balloted formal, harmonized document that specifies a

profile. [POSIX91]

3.77 SYSTEM

System is defined as the composite of equipment, material, computer software, personnel,

facilities and information/procedural data that satisfies a user need. [SYSB-1]

M_..,

3-13

3.78 SYSTEM HARDWARE ARCHITECTURE

System Hardware Architecture is an architecture consisting of the set of hardware resources

in a configuration of distributed computers, memories, buses and network elements.

V

3.79 SYSTEM SOFTWARE ARCHITECTURE

System Software Architecture is an architecture consisting of the elements and interfaces

between software components in a system.

3.80 SYSTEM _ERVICES _OFTWARE

System Services Software is common software, independent of application software, which

is needed to run application software and enable it to interface to data within a system or

across the EEL This is similar to the POSIX entity, system software, which is defined as the

application independent software that supports the running of application software.

3.81 TASK

Task is defined as a software entity that is executed in parallel with other parts of a software

program to perform an action. [BOOCH87]

3.82 UNDERSTANDABILITY

Understandability is defined to mean all requirements related to a subject can be found and

viewed together, and individually and jointly understood by the analysts and designers.

3.83 USER

User is another system (human or physical) which interacts with the target system.

3-14

4. GENERAL REQUIREMENTS

The SGOAA shall [1] be used to determine the interface points and requirements for the

control of, and information exchange between, onboard subsystems, support to the crew,

and effective interfaces between onboard and offboard systems. In accordance with system

requirements, a SGOAA compliant architecture shall [2] meet open standards criteria. A

SGOAA compliant system architecture shall [3] provide data acquisition, data storage, data

processing and data communication functions that interconnect architectural elements as

shown in the functional interface diagram, Figure 4-1. Architectures developed in

accordance with this standard shall [4] meet the following general requirements for

developing new architectural elements and for using existing applications and mission

elements.

4.1 OPEN SYSTEMS REQUIREMENTS

An architecture developed in accordance with this standard shall [1] satisfy the open systems

architecture definition incorporated in this standard. The open architecture so developed

shall [2] be capable of being readily expanded in functionality and performance without

redesign or significant modification to the existing system. An architecture satisfying this

standard shall provide information hiding, abstraction, inheritance, modularity, robustness

and extensibility.

Control subsystems may be decomposed into lower level subsystems. A control subsystem

usually implements a unique avionics capability. These control subsystems may have

flight, mission, or safety critical functions.

4.2 LOWER LEVEL STANDARDS SELECTION

Lower level standards developed by accredited standards development organizations

(which use an open forum) shall [1] be preferred in selection over those standards

developed by bodies using a closed forum. Lower level standards shall [2] be selected by the

process of developing a standardized profile. Architecture specifications for which there is

no draft or approved standard shall [3] not be selected. One of the driving requirements for

selection shall [4] be selection of a standard that provides the full range of services required

to satisfy the system applications. Other factors to consider in standards selection shall [5] be

degree of openness in development, stage of completion, stability, compliance with national

4-1

o_._ _ _.o _.,_
now Z

• • • 000

V

4-2

=

and international standards, degree of satisfying a SGOAA service need, consistency with

the SGOAA and availability for implementation without restrictions.

Preference shall [6] be given to existing mature standards, followed by emerging standards,

and only if necessary, followed by new standards. The order of selection within these

preferences is as follows:

• Approved standards developed by (a) accredited international bodies, (b) accredited

regional bodies and (c) accredited national bodies.

• Draft standards developed by (a) accredited international bodies, Co) accredited

regional bodies and (c) accredited national bodies.

• Recognized de facto standards and specifications developed by nonaccredited bodies

using an open forum.

• Approved standards and specifications developed by nonaccredited international

standards bodies using a closed forum.

• Approved standards and specifications developed by nonaccredited national

standards bodies using a closed forum.

4.3 ARCHITECTURE FEATURES

An Architecture prepared in accordance with this standard shall [1] provide the following

features.

4.3.1 REQUIREMENTS ARCHITECTURE

An architecture prepared in accordance with this standard shall [1] be an architecture that

can be tailored for design implementation based on actual system requirements.

4.3.2 CRITICAL INTERFACES

An architecture prepared in accordance with this standard shall support [1] flight, [2]

mission and [3] safety critical functions and interfaces, as required.

:- d

4-3

4.3.3 NON-CRITICAL INTERFACES

An architecture prepared in:accordance with this standard Shall [1] support non-critical

support functions and interfaces, as required.

V

4.3.4 RESOURCE CONTROL

An architecture prepared in accordance with this standard shall [1] provide for control of the

system resources that are used for control and information processing in onboard systems

by use of system services software as requested by application software through a standard

interface.

4.3.5 COMMONALITY

An architecture shall [1] be comprised of common hardware and software components to

the maximum possible extent.

4.3.6 INTERFACE STANDARDIZATION

An architecture prepared in accordance with this standard shall [1] provide standard

interfaces and shall [2] also allow user definable interfaces where no standards exist or

standard is not applicable. Interfaces between hardware and other hardware entities shall [3]

be based on standards. Interfaces between hardware and software shall [4] be based on

standards. Interfaces between system services software and application software [5] shall be

based on standards. The following interfaces shall [6] be prohibited in an architecture

compliant with this standard: (1) direct, non-service task to task communications, and (2)

applications to applications direct information exchanges, which bypass use of system

services.

V

4.3.7 CREW OVERRIDE

For crewed vehicles, an architecture prepared in accordance with this standard shall [1]

enable crew intervention, through multiple techniques, to safely override or inhibit

automatic flight, mission or safety critical functions. For uncrewed vehicles, the

architecture shall [2] enable ground control station intervention to safely override or inhibit

flight, mission or safety critical functions.

4-4

4.3.80NBOARD HEALTH MANAGEMENT

An architecture compliant with this standard shall [1] provide at least health management,

status monitoring and warning capability to monitor critical functions in onboard systems,

subsystems, components and crew and shall [2] provide avionics system level error recovery

and fault treatment for non-critical hard deadline functions. Fault tolerance shall [3] be

carried out by error processing and fault treatment. System service software built-in-test

(BIT) to include error detection, processing and recovery and fault treatment shall [4] be

incorporated into software control modules. Hardware built-in-test equipment (BITE) to

include error detection, processing and recovery and fault treatment shall [5] be

incorporated into hardware modules. Error processing and recovery and fault treatment for

flight critical functions shall [6] be performed at the system services software and/or

hardware module level. The interface between hardware BITE and health and status

applications software shall [7] be through standard software services. Error detection,

processing and recovery and fault treatment shall [8] be timely enough to prevent loss of

critical functions.

At least two levels of health management, status and warning capability may be provided in

compliant architectures: level 1 is application software prepared for the user's platform

with knowledge of the mission, system and user goals. Level 2 is service software which

utilizes standard health management capabilities (i.e., in Data System Services) as defined

in paragraph 4.3.9.4 of this standard.

On board health management that controls allocation of avionics system resources shall [9]

be implemented in application software where knowledge of the mission or specific system

is unique and cannot be entered into the table-driven health management Data System

Services software. The interface between the reconfiguration hardware and the controlling

application software shall [10] be through standard Data System Services software.

Application software performing on board health management shall [11] be capable of

overriding reconfiguration decisions made by fault tolerance functions provided in Data

System Management under Data System Services.

An architecture compliant with this standard shall [12] provide operating modes for at least:

(1) mission ready, (2) operationally ready, (3) degraded, and (4) red-tagged.

4-5

4.3.9 DATA SYSTEM SERVICES

An architecture prepared in accordance with this standard shall [1] include requirements for

data system services. This shall [2] consist of at least requirements for input/output data

services management, network services management, data base management, data system

management, and an operating system.

4.3.10 GROWTH AND SPARE CAPACITY

An architecture prepared in accordance with this standard shall [1] accommodate growth

and spare capacity in data storage, processing throughput, network throughput,

input/output and additional sensors/effectors as required by system documentation.

V

4.3.11 MODULARITY

An architecture prepared in accordance with this standard shall [1] be modular.

4.3.12 SERVICE TRANSPARENCY

An architecture prepared in accordance with this standard shag [1] be implemented with

sufficient transparency that the user will have visibility into the operation of services, but

not necessarily the implementation of services.

4.3.13 TECHNOLOGY TRANSPARENCY

An architecture prepared in accordance with this standard shall [1] be implemented with

sufficient transparency that technologies applied to design can be upgraded without revising

the architecture and without negative impact on the user.

4.3.14 INTEROPERABILITY

An architecture prepared in accordance with this standard shall [1] support interoperability

by providing standard interfaces between multiple programs.

4.3.15 DEPENDABILITY

An architecture prepared in accordance with this standard shall [1] meet dependability

requirements in a manner that supports standard interfaces, commonality, modularity and

interoperability. Such an architecture shall [2] further satisfy the following subparagraphs.

4-6

4.3.15.1 Avoilability

An architecture compliant with this standard shall [1] be designed to satisfy the specified

Availability requirements of the designated system.

4.3.15.2 R_liObility

An architecture compliant with this standard shall [1] be designed to satisfy the specified

Reliability requirements of the designated item.

4.3.15.3 Safety

An architecture compliant with this standard shall [1] provide an interface not dependent

upon avionics system specific safety features for application software that is required to be

portable.

4.3.15.4 Security

An architecture compliant with this standard shall [1] provide an interface not dependent

upon avionics system specific security features for application software that is required to be

portable.

4-7

V

\

5. ARCHITECTURE INTERFACE DETAILED REQUIREMENTS

The SGOAA model is based on partitioning between logical and direct requirements as

illustrated in Figure 5-1. The model is established to include architectural functions,

hardware, software and interfaces for all avionics systems. This SGOAA requirements

description includes both system service software and applications software for the Space

Data and Operations Control Subsystems. Interfaces in this model are valid for both one

platform and multi-platform architectures on one or more vehicles.

This model is to be used to define how system requirements are to be applied at the

appropriate system level to determine the logical and direct interface points. System logical

data flow requirements should be created for each client/server entity addressing the data

attributes needed by that entity or needed to be provided for some other entity. The logical

data flow requirements should identify the source of the data and the end-user needing the

data, as well as the characteristic attributes required of the data. Logical data flow

requirements should not be concerned with the mechanism for implementing the data

interchange. Implementation related requirements for the interfaces are a direct interface

issue relating to the mechanisms provided for flowing the data from the source to the end-

user. Sources of the design requirements for the interfaces, application platform hardware

and application platform services should be derived from the Applications Software

requirements and their logical data attribute requirements based on the user's needs.

5.1 SYSTEM ARCHITECTURE REQUIREMENTS

The SGOAA System Architecture as shown in Figure 5-2 shall form the basis for creating a

model of the system under development.

System architecture models shall [1] consist of a functional definition of the types of

processors and communications paths required. The model shown in figure'5-2 has three

types of processors interconnected by two types of communications. This model only shows

one of each type of hardware; the number of instances of each type of processor is variable

depending upon system unique requirements and may range for 0 to n. For example, a

centralized system architecture may look just like Figure 5-2, while a distributed system

architecture may have multiple General Avionics Processor (GAPs), Special Avionics

Processor (SAPs) and Embedded Processor (EPs). Either type of architecture may have many

5-1

i i I a

m

V

_ v

?

om

5-2

I+iiii__fi+T++_!I!+lif+i++li_+:I:+,+_::_+.+.+.,++::J_iM_i+:iI+ii:iiMii:iiiM!l;+

N "- ili:+ _ ,-

+++.m _ +++++++++i+++m _, M

:!_" _ 'i'_! _ _._!' ,_ _il - '_

... ::.:+:::: _ _ :0 _ _-'_'+'_: ""
-- _/_ _..::.'-:: c' +:: I _..-.:o_ •

: 0 :_: x_l :+:::::.x::::_::: 0 _

Z(.3

I.I.I I_I
I-'I--
zz

.m

.<

_g

system interconnects and/or local interconnect mechanisms. More than one sensor and

effector will usually be the rule in most non-trivial systems.

The processors shown in the system architecture in Figure 5-2 are a GAP for general

purpose processing, a SAP for specialized processing support (vector/massively

parallel/other), and an EP for the function of processing data within the sensor and effector

devices. The sensors and effectors shown in the example may also interact directly with the

main processors (the GAPs) or indirectly through EPs built into the sensors and effectors (if

applicable).

Communications paths illustrated are of three types: system interconnects such as core

networks for interconnecting sets of general processors or nodes, local interconnects such as

local buses for interconnecting EPs and SAPs with their supported GAPs and general

purpose processing applications, and internal interconnects such as backplane buses.

System models shall [2] follow the general format of Figure 5-2, but shall [3] be tailored to

match individual system requirements, in particular the program's application of sizing to

the "system".

5.2 ARCHITECTURE INTERFACE MODEL REQUIREMENTS

An architecture Compliant with the SGOAA InterfaceModel : _ _ i--_ _- _--requirements shall [I] consist

of six classes of interfaces as shown in Figure 5-3 and defined in Table 5-I. These classes are

the levels of interfaces from hardware up to high level systems which are to be completely

defined in an architecture developed in accordance with this standard. Definition of each

interface class shall [2] be in accordance with the requirements contained in the following

paragraphs.

For flight and safety critical functions, the exchange of information for error processing and

control shall [3] be restricted toclasses 1,2, and 3. For mission critical functions, the

exchange of information for error processing and control shall [4] be restricted to classes

1,2,3, and 4. For any critical functions or service function with hard deadlines, an

architecture prepared in compliance with this standard shall [5] not allow the exchange of

information for error processing across Interface Classes 5 and 6. Errors introduced by data

transmission are removed at the lower interface class. The data itself, however, may still

have errors if the source of the data was in error. Error processing on these data error may

5-4

L J
V

A

--I

_D

W

n

--I

m

m

• o

m

i!"

II I! II II

om

_m

CLASS

5

6

Table 5-1. Architectural Interface Classes

DESCRIPTION

Hard, ware-to-Hardware Direct:

Class I hardware direct interfaces are the direct connections between different types of
hardware such as needed to enable buses and communications links to address processors or

needed to enable processors to address memory registers.
, .,.,

Hardware-to-ODeratin_ System Extension Software Direct:

Class 2 hardware to operating system extension software direct interfaces are the direct
connections between hardware registers and operating system extension service software or

other software performing that function, such as drivers needed to enable address registers
to move data packets from hardware to system service software, and service drivers which

can respond to the data packets.

Operating System Services Software-to-Software (Local) Direct:

Class 3 operating system service software to other software direct interfaces are the direct
connections between operating system service code and other local software code sets,
which enable operating system software to receive and interpret data packets, and pass
them on to other software code which will process them locally.

Data System Services Software-to-Data System Services Software Logical:

Class 4 system service software to other system service software logical interfaces are the
indirect connections which enable local service software to determine the address of the

intended software in other local or remote locations which need the register data being

stored and to pass the data appropriately. Enables the handling of logical data transfers
from source to user service

Data System Services Software-to-Avvlications Software Direct:

Class 5 system service software to applications software direct interfaces are the direct
connections which enable software service code to access and process data from local

application software code.

Avvlications Software-to-AuDlications Software Loeicah
. . _. v

Class 6 applications software to applications software logical interfaces are the indirect
connections which enable an application originating data to pass it to an application
which needs to use the data, or enable an application needing data to determine the source

from which the data must be obtained. These are logical data transfers from source to user.
This interface provides the indirect connections that allow applications in different

systems or in the same system to communicate, thus enabling applications software to
interact across or within system boundaries to accomplish a mutual purpose. These
interfaces may be applicable to applications executing in the same processor, in different

processors in the same node or in different systems.

V

V

5-6

take place in the application software, but it must be understood that such error processing

reduces the portability of this Application Software.

5.2.1 CLASS 1 " HARDWARE-TO-HARDWARE DIRECT INTERFACE

REQUIREMENTS

The Class I Hardware-to-Hardware Direct Interface shall [1] be defined in accordance with

the three key aspects of the class 1 direct interface: the interface architecture, the generic

processing external hardware architecture, and the general avionics processor internal

hardware architecture.

All types of error processing on data transmissions through the class 1 interface shall [2] be

allowed.

5.2.1.1 Interface Architecture

5.2.1.1.1 Hardware to Hardware Direct Interfaces

Hardware to hardware direct interfaces shall [1] be defined as shown in Figure 5-4. These

interfaces consist of the nuts and bolts, chips and wires of the system architecture model

described in paragraph 5.1. With regard to the model, this interface shall [2] consist of all the

hardware to hardware interfaces within each processing element, as well as the hardware

interfaces to the external environment by way of the system interconnect, local

interconnects, internal interconnects or direct interfaces. This architecture shall [3] provide

for three classes of processors: the EPs, SAPs and GAPs for which standardized interfaces

shall [4] be required to be selected from a set of acceptable lower level interface standards.

5.2.1.1.2 Hardware Architecture

The GAP architecture shall [1] be configured to provide hardware components to interface

to a system interconnect, to interface to local interconnects, to process applications, perform

BIT and optional components for other purposes as required by the system. The SAP

architecture shall [2] be configured to provide hardware components for control, filtering,

bus interface, BIT and other specialized purposes as required by the system. The EP

architecture shall [3] be configured to provide hardware components for microcontrol, BIT,

hardware handling and setup, and bus interface as required by the system.

5-7

,!" = ill::_i:iiiii_i_iiii!iii!i!!!i!i_ii!i!!:_

--I £/) 0 !II!II iii:i_il!:_ :I ¸

z _ 0 _ ii!i !iiiiiiill!̧̧ ¸_ i'_'_'i'ii_i_ii::':::':¸-_¸w>O I _1

i lll

_ uJ._ f_! __ , ,,,

I I

'-'- -_i_.........................._-_ _'_i _i.".__:_ _-_._ _' Z

,,,,,"" ...-: :_._:_!_..:_._)i_!_.-_r_:'.._'.._z " Ill
IJ.I IJUI _.,.. _-_ :_:._:'_.__:::_:_:."_........ :_: --I In't "L_ _,_._::.:.:.:.:-:.:.:-:-:-:-:-:.::_:__..'.:.-':_:_:_:I::::_..'.,'.'.,,,'...'..¢::'.,_: _ z_._. ::.:_::._:.: ¢_)

:'.,'.:.".-_:._:_: !_i":._'.':'_i_
ILl :_:.._._._ _ :::_..,,::. 0

.::_,: .)-.,'_: _ i!_ I--

_ v
)

5-8

a. The hardware architecture shall [4] provide communications from at least one of three

levels of communications: Level 1, System Interconnects (e.g., Fiber Data Distribution

Interfaces - (FDDI)), Level 2, Local Interconnects (e.g., MIL-STD-1553 bus and RS-449

links), and Level 3, Internal Interconnects (e.g., VME backplane). This is illustrated in

Figure 5-4.

b. Level 1 system interconnects shall [5] be implemented by high capacity networks or links

providing communications between host platforms using techniques such as FDDI or by

direct links between high data rate elements.

¢ Level 2 local interconnects shall [6] be implemented by a combinations of buses and

direct links for analog, discrete or serial communications between subsystem elements

or components within one host platform.

d. Level 3 internal interconnects shall [7] be implemented by a combination of backplane

buses to connect devices such as circuit boards connected by VME or Futurebus+

backplanes and internal component links.

\

The communications from sensors or effectors to EPs are only possible through direct links

because the intention of the architecture is that embedded processors are those processors

embedded in the sensor or effector hardware devices to minimize the communications

latencies. _ _

5.2.1.2 Generic Processino Extern.al Hardware Architecture

The Generic Processing External Hardware Architectures shall [1] be defined as shown in the

example in Figure 5-5. The architecture system interconnect represents the inter-subsystem

connectivity, and can be implemented by a combination of one or more communications

paths using point-to-point, ring, bus or other architecture designs. Typically, system

interconnects such as core networks are implemented by lower level standards such as FDDI

or Ethernet. Local interconnects provide the intra-subsystem connectivity for high speed

data communications between processors within one subsystem. Typically, the local

interconnects are implemented by lower level standards such as MIL-STD 1553B for local

command and data buses, RS-488 for timing controls, and direct links for analog and

discrete signals. The interface plugs shown represent the unique hardware interfaces which

shall [2] be defined by standards.

5-9

::::::::::;::::::

5-10

i

,A

5.2.1.2.1 GAP Architecture __

GAPs represent general purpose data processors. A GAP, if required, shall [1] be one of two

forms: one for standard general purpose use [GAP(S)] and one for multiplexing and

demultiplexing signals [GAP(M)]. Typically, GAP devices are used where slow response

times (such as on the order of seconds to tens of seconds) are required. An example of a

compliant implementation of GAP(S) processors is the Standard Data Processor in the Space

Station Freedom program and the General Purpose Processing Element in the F-22

program. An example of a compliant implementation of the GAP(M) is the Multiplexer-

DeMultiplexer processor in the Space Station program.

5.2.1.2.2 SAP Architecture

SAPs if required, shall [1] provide the special purpose processing which is usually needed in

high power embedded computers and may be implemented by devices such as vector or

associative processors, massively parallel data processors, or arithmetic coprocessors.

Typically, SAP devices are used where response times (such as on the order of hundreds of

milliseconds to a second) significantly faster than in a GAP are required. Examples include

the associative and vector processors used in the F-22 program.

5.2.1.2.3 EP Architecture

Within each sensor or effector, this architecture allows, but does not require, the placement

of processors embedded in the sensor or effector unit. EPs if required, shall [1] be one of two

forms: one for effector processing [EP(e)] and one for sensor processing [EP(s)]. EPs shall [2]

provide the very high speed processing necessary to manipulate and convert analog data to

digital data while performing some preprocessing on it to reduce the data rate to a more

acceptable level for linkage back to the GAP(M). Typically, EP devices are used where very

fast response times (such as on the order of milliseconds or less) are required. Where the

data rate with the sensor or effector is acceptable to the GAP(M) and no other pre-processing

is required, direct interface to the GAP(M) may be used. Sensors and effectors interface to

the EP devices either through local communication interfaces or through direct links.

\ J

5.2.1.2.4 Lower Level Interface Standards

Lower level interface standards shall [1] be selected for implementing system interconnects,

local interconnects, GAP to EP direct links, GAP to S direct links, GAP to E direct links, EP to

5-11

Sdirect links, and EP to E direct links. User definable interfaces shall [2] be provided for the

SAPs. Lower level video and graphics interface standards shall [3] be selected to define

implementations for connecting the GAP devices to humans for development, operation

and maintenance of the systems.

V

5.2.1.3 General Avionics Processor Interni_l Hardware Architecture

The requirements for general purpose processing elements in a vehicle shall [1] be defined

as shown in the GAP architecture presented in Figure 5-6. The generic hardware elements

shown in the figure comprise the basic, generic hardware modular elements in the SGOAA.

The processor may be configured as a GAP(S), GAP(M), EP(s) or EP(e) depending on the set

of functions required by a specific application. The SAP is a special purpose case and may

require functions not included in the generic processor function set such as vector or

parallel processing.

5.2.1.3.1 GAP Function Set

The GAP function set is a shopping list of modular functions which can be used to build the

needed configuration. Each module shown provides a specific independently procurable

service. Additional unique service functions may be added by defining additional modules.

The actual implementation in hardware is interface standard, technology and detailed

design dependent. System performance requirements for hardware modular elements shall

[1] be a primary consideration in module selection to perform a specific function. System

error processing and fault treatment requirements for hardware modular element BITE

shall [2] also be considered in hardware modular element selection. Specific hardware

interfaces that shall [3] be defined by lower level standards are shown in Figure 5-6.

5.2.1.3.2 Internal Interconnect Interface Standards

Internal interconnect interface standards shall [1] be imposed to provide modularity with

the capability for technology upgrades and multiple vendor sources of processing functions

modules. Although only one internal interconnect bus is shown for the backplane in Figure

5-6, the actual bus implementation may consist of multiple buses depending upon the

specific application. Possible buses include data, time, test, and local memory. Multiple

standards exist for all of these bus types.

V

5-12

--__ /

z_

Im
<:
;m

L.

L.

,4m)

I.m(

_J
0
L-

I--.

z-

*mm

5-13

5.2.1.3.3 Lower Level Interface Standards

Lower level interface standards as illustrated in Figure 5-6 shall [1] be selected for system

interconnect, test and checkout system, mass memory, timing bus, discrete data, analog data,

serial data, parallel data, local interconnect, video/graphics, audio and optional functional

growth interfaces. For example, to implement the functions of the basic GAP(S) would

require implementation of the system interconnect processing, application processing and

local communications (e.g., local interconnect and I/O) processing functions of the GAP

Hardware Architecture shown in Figure 5-6. A internal interconnect bus standard such as

Future Bus Plus (FB+), VME or Pi Bus would be imposed as the backplane data bus

standard. The backplane bus standard used in a specific architecture implementation might

consist of one or more specific buses; separate buses are permitted for uses such as test and

maintenance.

V

5.2.2 CLASS 2 - HARDWARE-TO-OPERATING SYSTEM EXTENSION SOFTWARE
DIRECT INTERFACE REQUIREMENTS

Hardware to operating system extension software interfaces are shown in Figure 5-7. These

interfaces shall [1] consist of the interfaces from the operating system extension, low level

software or other software performing the same function (such as drivers in the OS, data

system manager, etc.) to the hardware instruction set architecture USA) and register usag e .

With regard to the model, these interfaces are internal to each processing element. The

hardware elements are grayed out to show that these elements are a repeat of the previous

figure; the black elements represent the new capabilities and interfaces added by this

interface class. This class shall [2] define the interfaces for low level software drivers that

interact with the hardware for each of the processor types (EPs, SAPs, and GAPs). All the

drivers for all processor types shall [3] be contained in a SDSS sub-architecture.

v

5.2.2.1 Error Processing

All types of error processing on data transmissions for flight or safety critical functions

through the class 2 interface shall [1] be allowed except those employing retransmission. For

those mission critical or service functions that have no hard deadline requirements, error

processing employing retransmission shall [2] be allowed.

5-!4

\ /

mmmmm

i e I

¢,,,i

!

I
E
q,i

_>
,6
L.

I=I

r,.)

ill
I_.

i>
im

5-15

5.2.2.2 SYStem Services Software

The system services software in the SDSS for the GAP shall [1] be organized into five

categories. The categories shall [2] be the Data System Manager, Data Base Manager,

Input/Output Data Services Manager, Operating System, and Network Services Manager.

(See section 5.3 for interface service requirements.) The software drivers for the SAP shah

[3] be organized into four categories: I/O)formatting, normalization, specialized processing

interfaces, and local communications interfaces. The software drivers for the EP shall [4] be

organized into four categories: built-in-test (BIT), hardware handler interfaces, local

communications interfaces and microprocessor execution control.

V

5.2.2.3 Hardware/Operatinq System Extension Interfaces

The hardware/operating system extension interfaces needed for the hardware to be accessed

by low level software such as drivers shall [1] be defined as shown in Figure 5-8. The

interfaces are shown in black and labeled, and everything else has been grayed out to

highlight items of interest.

5.2.3 CLASS 3 - OPERATING SYSTEM SERVICES SOFTWARE-TO-SOFTWARE

(LOCAL) DIRECT INTERFACE REQUIREMENTS

Operating system services software to other local software direct interfaces shall [1] be

defined as the operating system interfaces shown in Figures 5-9. This definition consists of

the I/O handler calling conventions and context switch conversions between the system

software drivers on one processing element interfacing with one or more system software

services to provide for local information exchange. Class 2 provided the software drivers to

isolate the hardware, Class 3 provides the remainder of the direct operating system

interfaces to local software services needed to operate the computer system.

5.2.3.1 Local Software Service Grou_)lna

All local software services shall [1] be grouped into the Data System Services (DSS) sub-

architecture and shall consist of the Data System Manager, Data Base Manager,

Input/Output Data Services Manager, Operating System, and Network Services Manager.

Class 3 shall [2] provide the direct interfaces between the operating system services to other

local data system services and applications for effective local interprocess communications

and support. These interfaces are direct interfaces because they enable operating system

service code to interact with software service code in other local entities. Although the E

V

5-16

,_.j

5-17

®

r_

E

r_

c_
m

L..

om

V

5-18

operating system services are a subset of the DSS, they shall [3] also provide direct low level

operating system service access not provided by the higher level DSS interface for those

users requiring this type of interface. Class 3 interfaces shall [3] meet derived requirements

based on the need of an application to support users.

5.2.3.2 Class 3 Fliaht, Safety and Mission Critical Interfaces

For class 3 interfaces of flight, safety or mission critical functions with hard deadlines to

either the Data System Manager or to Device Drivers, all types of error processing on data

transmissions through the class 3 interface shall [1] be allowed except those employing

retransmission. For those mission critical or service functions that have no hard deadline

requirements, error processing employing retransmission shall [2] be allowed. For class 3

interface to applications, no error processing across the interface shall [3] be allowed (that is,

the data transmission itself is assumed to be error free). ==

5.2.3.3 (_llass 30oeratino System Interfaces

The operating system-to-system service software and applications software interfaces shall

[1] be defined as shown in Figure 5-10. The interfaces are shown in black and labeled. Note

that there are three possible types of interfaces: upward between the operating system

services to any software application, upward to other data system services, and downward to

the system extension software such as drivers within the operating system. Their grouping

into class 3 facilitates design of operating systems and an interfaces needed to insure

effective operating system performance.

\

5.2.4 CLASS 4 - DATA SYSTEM SERVICES SOFTWARE-TO-DATA SYSTEM
SERVICES SOFTWARE LOGICAL INTERFACE REQUIREMENTS

Data system services software to data system services software interfaces shall [1] be defined

as shown in Figure 5-11. This is the peer to peer interface of data system services software

in one processing element (GAP, SAP or EP) interfacing with the system software in the

same processing element or remotely to an external processing element to coordinate

operations in a distributed environment. Since Classes 1 to 3 isolated the hardware and

software services in each processor, Class 4 shall [2] provide the interface capability for

services in one processor to interact with services in the same or another processor. Class 4

interfaces shall [3] meet derived requirements based on the need of an application to

support users in a multi-processing environment.

5-19

!

L

0
V

5-20

\

\ d

®

5-21

S

6

P

0

E

m

5.2.4.1 ClaSS 4 Critical Function Error Processina

For flight critical function,error processing Shall [1] not be aliowed on data transmissions

across the class 4 interface. For safety critical, mission critical or service functions, error

processing not employing retransmission shall [2] be allowed.

5.2.4.2 Class 4 Data System Services Interfaces

The DSS interfaces needed to support local operations and logical access to other GAP data

system services shall [1] be identified as shown in Figure 5-12. The black-line interfaces are

the primary interfaces between the local services. Local services and remote services shall

[2] have a common logical architecture. For distributed processing systems, a circular

interface between each service entity and itself shall [3] be defined as shown in Figure 5-12,

since each service must be able to communicate with remote versions of itself in other

nodes. Remote interfaces to the special avionics processor and the embedded processor

services shall [4] also be defined and specified.

5.2.5 CLASS 5 - DATA SYSTEM SERVICES SOFTWARE-TO-APPLICATIONS

SOFTWARE (LOCAL) DIRECT INTERFACE REQUIREMENTS

DSS software to applications software interfaces shall [1] be defined as shown in Figure 5-13.

This is the direct interface within a processing element between the application software

and the DSS software (language bindings/specification) to allow provision of needed

services. Since Classes 1 to 4 isolated the hardware and software services in all the

processors, Class 5 shall [2] provide the interface capability for services in any processor to

interact with an application executing in the processor. Class 5 interfaces shall [3] meet

derived requirements based on the need of an application to support users in a multi-

processing environment.

5.2.5.1 Class 5 Error Processina

Error processing on data transmissions across the class 5 interface shall [1] not be

allowed. Transfer of error processing results over the class 5 interface to Onboard

Health Management processing shall [2] be allowed.

5-22

o

i

5-23

I

/'M |i! I I
r!_._ I
l_:l! I_1

........... I

0

e"
m

II

®

m

V

5-24

5.2.5.2 _rvices to ADDIications Interfaces

The DSS to applications interfaces shall [1] be defined as shown in Figure 5-14. The

applicable interfaces are shown in black and labeled, and everything else has been grayed

out to highlight items of interest. There shall [2] be a standard access interface to the data

system services, which is a function of the service and independent of any one application.

The Input/Output Data Services manager shall [3] be capable of providing access to other

services as well as directly to the application or sensor providing the source of data. The

data system ma_-_shall [4] be capable oir _rovl(]mg control interfaces to other control

subsystems.

5.2.6 CLASO6- AP-PLICATIONS SO_R_-_TO_APPLICATIONS SOFTWARE
(LOGICAL) INTERFACE REQU/REMEN_

Applications software to applications software interfaces shall [1] be defined as shown in

Figure 5'15. This shall [2] be a peer to peer information exchange and coordination interface

between_applicaii0n Software_modules. __=_:_-=_Applications_shall_--_.......[3] not communicate directly. All

application to application software communicati6n Shall [4] be implemented by use of

System _rvicesso_warei_'_Ai_l communi_Gn_iY_f_ tl_r6u'g_ a Class 5 standard:

interface to System Services to provide the direct communications path between

applications. This interface may be between applications within a processing element or

between applications in separate processing elements. The grayed out parts of the figure

represent the material covered in Classes 1 to 5, the black parts of the figure are the new

interface definitions added in Class 6. Since Classes 1 to 5 isolated the hardware, software

services and applications in any processor, Class 6 shall [6] provide the interface capability

for an application in any processor to interact with another application executing in any

processor. Class 6 interfaces shall [7] meet user and ae_ved requirements based on the need

of multiple applications tO support users in a multi-processing environment.

5.2.6.1 Class 6 Error Processinq

Error processing on data transmissions across the class 6 interface shall [1] not be allowed.

Transfer of data between Onboard Health Management entities shall [2] be allowed.

",,._j

5.2.6.2 ADDIications to ADDIications Interfaces

Applications to Applications interfaces may also include interfaces between applications in

two different systems or vehicles. System A applications software to system B applications

5-25

o._

o IF,,_=

C: o
:!

=_L_,
0 D.'o
•- <,_
LLI _

om

5-26

\

i ::i!iiiiiSiSi:73i:i

ii i:_:i:7:_:i:i:i:i:i:i:i:i:i:i:!:

:i :!_!ii!i:i_Z_i!!_!i!i!:i:!i!iiiii!:

0

!iil¸iiiiiiiiiiiiiiii@ii!i_¸iii
:}i

i:!_8_i:i:iS!:i:!:i:!:i:i:i;i :i!i

¢,,

0
0

e"
m

II

®

r_

Y.

o
Im

_m
m

.<
M_

wl

¢...

tZ

5-27

softwareinterfacesshall [1] be defined as shown in Figure 5-16. The grayed out parts of the

figure represent the material covered in Classes 1 to 6 (within one system), the black parts of

the figure are the unique interfaces that are provided by Class 6 for inter-system interfacing.

Since Classes 1 to 5 isolated the hardware, software services and applications in any system,

Class 6 shall [2] provide the interface capability for an application in one system to interact

with an application executing in another system. Class 6 interfaces shall [3] meet user and

derived requirements based on the need of multiple applications to support users in a

multi-system environment. Class 6 interfaces shall [4] be defined to meet the overall

mission and operational control requirements across multiple facilities and vehicles.

5.3 DATA SYSTEM SERVICE ARCHITECTURAL REQUIREMENTS

The DSS architecture shall [1] include capabilities drawn from up to five categories of

services: the Data System Manager, Data Base Manager, Input/Output Data Services

Manager, Operating System, and Network Services Manager, as shown in Figure 5-17.

Interfaces from external entities to the DSS shall [2] be as shown. Control of the data system

resources shall [3] flow through the Data System Manager (DSM) to insure coordination of

the system configuration at all points for reliability. Data shall [4] flow through the

Input/Output Data Services Manager (IOSM). Crew display and control (D_) shall [5] be

capable of operating through at least the IOSM and the DSM to insure at least one normal

and one alternative path for direct low level system command and control by the crew.

Similarly, operations control shall [6] be capable of operating through at least the IOSM and

the DSM to insure at least one normal and one alternative path for direct low level system

control by the ground o_Ission control. Access by applications will be as required by the

system requirements documents.

The DSS architecture shall [7] provide options for at least the services as organized and

shown in Figure 5-18. Implementation requirements for such services will depend on the

system requirements documents.

5.3.1 INPUT/OUTPUT DATA SERVICES MANAGEMENT

The Input/output Data Services Manager shall [1] provide all interface to the system users

for data processing and data communication services. Services to be provided to the users

shall [2] be derived directly from user requirements. The input/output data services

management shall [3] include at least requirements for standard services data acquisition,

standard services data distribution and reports generation.

5-28

_jJ

v

[-

E

o

_ _ _!iiiiiiiiiiiiiiii
0

5-29

.o_-o o

[]

m

om

L.

.¢

IIU
L.

em

V

V

V

5-30

• :D

0 _ _ .-..= _- .., ® n- ee ® ,--

.-- _-, _ V '_LS".,._ _0 _ o 0 _ _ m I-.- _ 0
> = _J ,- --------a _ =" E _ ,,,"-q" - E E v

r_' LU LU - _-o v, -r- ,,,= ,.....n- "_ _- ___ -_ o IZwa: E o _ _ o = = . o_: w a:z _ _oo _..=.o_
_'0 _ m-_ _'_'_'_-_ _ _ w a:w o o o o a:O

,_w_ _.o_oo_ oooo_oo _ oo o-
oZ>ZZ= hZZZU) ZZ w ,,,,,r_ r_ Orh _"0

.... ZO Z n- _,_ =0

U.I c
_: WO _c _.

® ... __ m"ILl __ -_ m 'r _- -_ • o >

-- _ ,_ ILl c _ U)_ 14J_Z _ ,_

uu-_ " m _ _Z _ 0 c '.'.- --
Z_ 0 on o _ ',0 = c

j C_u; u_u__, uau..: = _ mmO ---- _ _- .40 _ 0 _- _ .4,_0 _PO , , ,_mo , , ,

-- ---- ®_ "_ 0

__ _ u_ ® _- ,_-

_-UJ _ =._:E =... _ "- E-. ® =c- E*- _".....

"-_ _ >_ _" -h --_" _- _- 0w_m D- << < _= E< E _---
0._ C .-- > E _ m _ ® --m ,--

v _-- oO _'='= _oc co _ ® m oo-- o--_) ®,. :
m_-=o-_:_oD_ o<<w<_ mrr_-o<-=o-=Om_ o=_
0 _' ' ' 0 Zm

_= • . _8 o, _

_"=' _ ==_ _- =___o

=,,o ,.,=. ,, o _,. ,:', ,..

" "-_ _ _ "-

))

E
¢M

[]
mm

fl,,

r_

k.

I:
m=l

OO

I=,

==
em

5-31

5.3.2 DATA SYSTEMMANAGEMENT

The Data System Manager shall [1] provide the housekeeping and control services for the

SDSS. Command and control service requirements shall [2] be derived directly from user

needs. Data system management shall [3] include at least requirements for configuration

management, timing service control, initialization startup and reconfiguration, error

processing, error recovery, fault treatment and reporting of health status to onboard health

management. The DSM shall [4] execute under the Operating System. There is a command

and control interface to the crew and to the SOCS. Command and control service

requirements are derived directly from user needs.

5.3.3 NETWORK SERVICES MANAGEMENT

The NSM shall [1] provide for peer-to-peer communication between applications on

distributed processing elements communicating over the SDSS system interconnect which

require use of network communications between applications in distributed processing

environments. The network services management shall [2] include at least requirements

for network services, network management, remote operation, network directory service,

and network association control.

5.3.4 DATA BASE MANAGEMENT

This entity shall [1] provide services to the SDSS subsystems and application users for the

management of structured data files, file transfers and file redundancy management. The

data base management shall [2] include at least requirements for file services, distributed file

transfer services, file transfer access and management, and node directory. All communi-

cation with and requests for services from the DBM shall [3] be through the IOSM.

5.3.5 OPERATING SYSTEM

The OS shall [1] provide the layer of SDSS software that isolates other services as well as

application software from the data processing hardware element. The OS shall [2] provide

management, allocation, and deallocation of the processor, memory, timing and I/O

processing resources for application and service software and hardware that is independent

of the mission. The operating system shall [3] offer at least open standard OS services such

as an OS kernel and/or a run time environment (RTE) and OS/RTE extensions. Resource

allocation and control that is mission dependent shall [4] be treated as an application.

A bare machine user may interface directly with the Run Time Environment (RTE). V

5-32

\
___.J

6. NOTES

(This section contains information that may be helpful, but is not mandatory)

v

6.1 AVIONICS SYSTEM NOTES

6.1.1 AVIONICS GENERAL

Avionics provide for information acquisition, transmission, and storage of analog or digital

signals and include the sensors, intra-platform communications, processing hardware,

software and subsystems, data storage, human-machine interface subsystems, and response

actuator controls used in the vehicle.

6.1.2 MODES

Modes govern how the system operates in response to human commands. Mission ready

mode mea_ns the system has all elements working as specified or "green". Operationally

ready mode means the system can function but can not accomplish a desired mission, for
_. __ .-:_ ,_

instance_h_en an aircra{t _ configured for a r_onnaissance mission but is needful for a

bombing mission, or when a spacecraft is can beiaunched but has no payload installed.

Degraded mode means the system is "soft broke", but can perform a subset of its required

functions. An example is when an aircraft radio is n_ot working so not all functions can be

performed but the aircraft can still fly and drop bombs. Red-tagged mode means that the

system cannot operate at all, for instance when an aircraft fuel system is polluted or a wheel

is broken on the ground.
=

6.1.3 ARCHITEC_RE INTERFACE MODEL

Chitectur Interface _ d i-is summatiz-M 5-3 d 6 1. _ l_i_re 5:3The Ar e o e an -

presented the archifeCture reference model, and Figure 6-1 presents an overlay of the

reference model on the generic avionics structure assembled in this standard. Both figures

also show the relationships of this architecture interface model to the PC)SIX interfaces.

6.2 REQUIREMENTS NOTES

6.2.1 DATA PROCESSING SUBSYSTEM _

Data processing _ubsystem requirements are inherited onto lower level subsystems.

processing subsystem is setup and controlled by a runtime operating system.

A data

6-1

: :.::: ::':.:::::.: :_, ::':!:"" _i.._:i_'-'-_ _ _:__::':_:i:i:i_: :::i:::_:_:::::_:_:_:::::_:_:::::_:::::::_:::::::::::::::_:_:_::::::::_:::::_::_:::::::_::::_:_`>":':::::::::::::::::::i:::iSiS:_:-":_S:S :':!::':";":_::_:: :i_::i:i:i:i:": :i2::i:::!::::;:::::::2 _

::_:_:':.:';:: ::::::::': :' :: ::_: .!;:;:;:;:_:"-_:::-::":::::: ::::: :::::::::::::::_:::::::::::::::::::_::::::_:::::::_:::::::::::::S::;:_:_:i¢_:::_:_:_:i:_i1:__:!i:i:i:i:i:i:i:!:!:_:!:_:_:_:!:_:_:_:_:!:::!x:x::::.::::::x: ::,::::::::_::

%...:!::'!_:ii__i_:_ :i_..:_i_i_i_:_:_,,_ !:__:_:::Ji::_:_:_i:::_i_i:i:i:::i:_:_:_:_:_:_:_:_:_:_:_:_::_:_::_:_:_:_:_::_;_:_::_:_%:i:::_:_:_:_:i:_:::i:::_:_:_:_:__:_:_:_:__:_:i_i_iii:ii:i:iii_i:ii:iil

l::_!_iii...'.:_fi_iii_i_ii_!iiii!i_ii_®_!i| f_i_iiii_iiiiii_iii_iiiii_ii:__ _i_i_iiiiiiiiiiiiiiiiiiiiii!iiiiiiiiiii_iiii_iiiiiiii_iiii_i_i_ !

:::::::::::::::::

m

_ m

@

-=

_N

&2

6.2.2 INTERSYSTEM APPLICATIONS INTERFACE

Intersystem applications interface requirements address logical requirements of the user

across the interface.

6.2.3 CONTROL SUBSYSTEM

Control subsystem requirements are inherited onto lower level control subs stezns.

6.2.4 MODULAR ARCHITECTURE

Modular architecture requirements changes should not cause disproportional changes in

the design, and design changes should be limited to one or a few design modules.

Requirements changes should not affect the architecture of the system, unless the change is

one for the architecture directly.

r/
v

6.2.5 DIRECT INTERFACE

Direct interface requirement8 are normally a design issue unless the physical

implementation has implications for the logical use or need for data, only then should the

direct implementation be specified as a requirement. For instance, a service such as a

Reports Generator getting data from a Data Base Manager might not need to know the inter-

network addressing of the Data Base Manager, but the Network Manager providing the data

would need to know the routing requirements of the hardware services.

6.3 REQUIREMENTS CHARACTERISTICS DESIRED

6.3.1 ROBUSTNESS

Robustness must enable a system to operate in conditions not originally foreseen by the

specification without catastrophic failures, without exhibiting behavior that disturbs the rest

of the system, by failing (if necessary) in a "graceful" manner by terminating cleanly and

safely.

6.3.2 SYSTEM SERVICES SOF_ARE

System SCrvice_ _0ftwar¢ must have common and standardized interfaces serving many

applications.

6-3

6.3.3 SERVICE FUNCTIONS

Service functions are usually widely replicated in support of many control or data

processing subsystems. This wide replication of functionality is a key determining

characteristic in defining an individual process as a service in this methodology. Services

are critical to system operation, not to mission or vehicle operation per se. An example of a

service function is a Report Generator since many applications and control subsystems

must generate reports; here, they call on the report generator service which knows how to

look up the table defining the applications/control report, how to format the format for

completion, how to find the data to fill the report fields with, and how to route the report

for distribution based on a predefined distribution list. High level standard services are

services such as timing, distributed data handling and fault tolerance, which may have

different needs when viewed as a multi-processing system than when considered as a single

processor system.

V

6.3.4 TAILORING

Tailoring of the SGOAA may result in subsets of requirements applicable to a mission or

program, but the resulting system must retain architectural interface compatibility.

6.3.5 SYSTEM CHARACTERISTICS

System characteristics that determine the nature and requirements for a system hardware

architecture are the number of processors, their type and topology, the speed and size of

shared memory available, the local memory of each, the bandwidth and access to

communications media, and the interfaces available for use by people, applications and

platform software services in the hardware.

v

6.3.6 ONBOARD HEALTH MANAGEMENT

Onboard health managemen_ facilitates tradeoffs between requirements for and design of

reliability, maintainability, error processing, and fault treatment. Compliant architectures

should also facilitate defining requirements for and interactions between health

management, logistics, supportability, and safety management.

V

6-4

=_..,,J

6.4 ARCHITECTURAL (_HARACTERISTICS DESIRED

6.4.1 SYSTEM SOFTWARE ARCHITECTURE

A _ystem software architecture must describe the set of system functions performed by the

applications software, and the structure of the platform software services that enable the

applications software to perform their tasks. The functionality described by the system

software architecture are the tasks which are required of the system to meet the needs of

operational users.

6.4.2 APPLICATION PLATFORM

The application platform provides services at its interfaces that, as much as possible make

the specific characteristics of the platform transparent to the application.

6.4.3 APPLICATION PROGRAM INTERFACE

The AP_.._Iis primarily in support of application portability, but system and application

interoperability are also supported by the communications API.

6.4.4 ARCHITECTURE LOCATION INDEPENDENCE

Architecture location independence is desirable, meaning an architecture compliant with

this standard should be independent of whether control functions are implemented

onboard the vehicle or offboard the vehicle (e.g., in support control facilities).

6.4.5 FAULT TOLERANCE TRANSPARENCY

Fault tolerance transparency is desirable, meaning applications in an architecture compliant

with this standard should not require knowledge of the redundancy of its platform or its

direct interfaces.

"._.j

6.4.6 ADAPTABLE REDUNDANCY

Adaptable redundancy is desirable, meaning that an architecture compliant with this

standard should allow more than one configuration of the architecture to provide different

levels of redundancy. This allows another level of commonality beyond that of hardware

and software modules.

6-5

6.5 DIRECT AND LOGICAL INTERFACE NOTES

6.5.1 CLASS 2 DIRECT INTERFACE

The Class 2 Hardware-to-System Software Direct Interface drivers are (obviously) hardware

dependent, but this enables the architecture to begin partitioning out of the hardware

dependencies, which is a key in providing for technology upgradability in the future.

6.5.2 HEALTH MANAGEMENT INTERFACE

Note that interface drivers specifically defined for health monitoring are not required. Each

required driver will collect all data associated with its hardware element and format it for

conveyance to the appropriate operating system interfaces; if health monitoring capabilities

have been implemented in the associated hardware, then this data will be collected along

with all other data.

6.5.3 CLASS 4 LOGICAL INTERFACES

Class 4 System Software-to-System Software Logical Interfaces provide the interface

capability for services in one processor to interact with services in the same or another

processor. They are the heart of multi-processor capability needed in modem space avionics

systems. EP services can interact with SAP and GAP services; SAP services can interact with

GAP services; GAP services can interact with EP and SAP services and other GAP services.

These interfaces are logical interfaces because the service originating data is interacting with

the service that will use the data (i.e., that will transform the data into another form for a

purpose).

V

6.5.4 CLASS 5 DIRECT INTERFACES

Class 5 System Software-to-Applications Software (Local) Direct Interfaces provide the

capability for services in any processor to interact with an application executing in the

processor. Applications can operate in any GAP, with potential partitioning of an

application across multiple GAPs. Similarly, applications can operate in any SAP or any EP.

These Class 5 interfaces are direct interfaces because the applications software code is

interacting with the service software code.

6-6

6.5.5 CLASS 6 LOGICAL INTERFACES

The Class 6 Applications Software-to-Applications Software (Logical) Interfaces are logical

interfaces because the application originating data is not directly interacting with

applications that will use the data. Class 6 interfaces are also the interface for exchange of

information between the space avionics system and another avionics system for overall

command and control. This interface is at the mission level and may be an information

exchange between the ground or between separate space vehicles.

Class 6 also provides the basic multi-system Capability to meet multiple actual user

requirements in multiple systems, facilities or vehicles. Applications can operate in any

system's processor (e.g., the Mission Control Center GAP or workstation) to cooperate with

applications in another system's processor (e.g., the Lunar Transfer Vehicle GAP).

6.6 IMPLEMENTATION CHARACTERISTICS

In implementation, tailoring of the generic architecture to the unique requirements of the

mission and system application is critical to successful use of this architecture. Profiles need

to be applied. Such usage must recognize the scaleability, recursiveness and interaction

between target and development environments in order to take full advantage of the utility

of this architecture.

6.6.1 ARCHITECTURE SCALEABILITY

The generic system architecture model can be scaled to apply to the size and definition of

system being used in any type of hardware/software processing system. It is equally

applicable to systems at the vehicle level, rack or black box level, module or board level, or

chip level, as shown in Figure 6-2. In this figure, examples of a system interconnect, local

interconnect and internal interconnect change as the scale of system application changes.

The use of embedded processor, general avionics processor and special avionics processor

also changes. While only intended as an example, this figure makes clear that when two

more engineers are applying the this architecture to a specific project, mission or system,

great care must be taken to insure all discussions reference the same level of "system".

\

6.6.2 ARCHITECTURE RECURSIVENESS

The generic architecture interface model can be recursively applied to different usages of

layers (i.e., hardware, drivers, OS, etc.) between the SGOAA classes in the architecture. As

6-7

I

i
ft.

II
i_

Ill
em

r_

6-8

shown in Figure 6-3, from an external view, hardware such as an ethernet board is a

monolithic block. However, from within the block, ethernet "hardware" may consist of a

microcosm of the entire interface model with board drivers, a OS kernel/RTE, some

ethernet services and some ethernet processing applications all resident on the board. All

of these microcosmic elements are transparent to an outside user passing through the

interface.

6.6.3 ARCHITECTURE TARGET DEVELOPMENT

The architecture applies equally to any hardware/software processing system. In the

example shown in Figure 6-4, it applies to a development environment, where

development software such as a compiler is an application, which must have knowledge of

the host, the target and the programming language being used. Within the development

environment, there are services, OS elements and drivers. The target code is operated on by

the development environment and transferred upon completion to the target hardware to

execute. From the view of the target environment, this development environment is

transparent.

6.7 TERMINOLOGY NOTES

In the space systems avionics arena, a data system is terminology used to refer to the set of

operating system elements and supplementary or common services controlling processing

resources in a host platform. This is similar to and includes the terminology system

executive and distributed executive as used in PAVE PILLAR, global executive as used in

parts of the F-22 Program, or common system services (e.g., an operating system) as used

often in PC)SIX and other parts of the aircraft avionics arena. This standard differentiates

between data system and data system services, in that a data system includes data system

services, command processing, and other common capabilities (see Space Data System and

Space Data System Services definitions in Section 3A).

\ /

6-9

®
im

L..

[,,,

6-10

_E

.=

6-11

6.8 PURPOSE OF PROFILES

As described in [POSIX91], profiles define the combinations of base standards and profiles

(i.e., templates) for the purpose of:

• Identifying the baseline standards, together with appropriate classes, subsets, options,

and parameters, that are necessary to at least accomplish interoperability, portability

and other identified capabilities.

• Providing a system of referencing the various uses of baseline standards that is

meaningful to both users and suppliers

• Enhancing the availability for procurement of consistent implementations of

functionally defined groups of baseline standards that are expected to be the major

components of real applications systems

• Promoting uniformity in the development of conformance tests for systems that

implement the functions associated with the profiles

V

6.9 BIBLIOGRAPHY OF U_EFUL DOCUMENTS

These are publications which offer insight into generic, open architectures and provide

supplemental explanatory material for this standard.

[SP-M-001] "Contract End Item Specification for Data Management System, Vol. 1: Data

Management System Requirements", Rev. E, (NASA Approval Pending),

Feb. 14, 1992. Reference Document #1.

[SSP 30261] Section 3 Revision D "Data Management System Architecture Control

Document Section 3: Data Management System" with Revisions D1 and D2,

September, 1991.

[MDC H4187] " Software Requirements Specification for the Data Management System

Data Storage and Retrieval", SSFP DR SY-34.1I, Contract No. 87916006, IBM,

October 25,1991.

[MDC H4188] " Software Requirements Specification for the Data Management System

Network Operating System", SSFP DR SY-34.1I, Contract No. 87916006, IBM,

October 25,i991.

[MDC H4189] " Software Requirements Specification for the Data Management System

Operating System/Ads Run time Environment", SSFP DR SY-34.1I, Contract

No. 87916006, IBM, October 25,1991.

--- " 6-12

x,...j

[MDCH41901

[MDC H4191]

[MDC H4542]

[IBM101]

[IBM401]

[IBM403]

[IBM404]

[PRU90]

[WRA91]

[SA91]

" Software Requirements Specification for the Data Management System

Management", SSFP DR SY-34.1I, Contract No. 87916006, IBM, October

25,1991.

" Software Requirements Specification for the Data Management System

Standard Services", SSFP DR SY-34.1I, Contract No. 87916006, IBM, October

25,1991.

"User's Guide (Software) for DMS Initial Release ", SSFP DR SY-40.1I,

Contract No. 87916006, MDSSC, September 23, 1991..

"Critical Item Development Specification for Mass Storage Unit", SSFP DR

SY-06.2I, Contract No. 87916006, 153A101-PTIC, IBM, Oct. 9, 1992.

"Critical Item Development Specification for the Standard Data Processor",

SSFP DR SY-06.2I, Contract No. 87916006, 152A401-PT1D, IBM, Oct. 9, 1992.

"Critical item Development Specification for the Embedded Data Processor",

SSFP DR SY-06.2I, Contract No. 87916006, 152A403-PT1D, IBM, Oct. 9, 1992.

"Critical Item Development Specification for the Network Interface

Adapter", SSFP DR SY-06.2I, Contract No. 87916006, 152A404-PTID, IBM, Oct.

9, 199Z

Pruett, D., "Avionics Software Open System Environment Reference

Model", JSC, March 1990.

Wray, R. B., "Requirements Analysis Notebook for the Flight Data Systems

Definition in the Real-time Systems Engineering Laboratory (RSEL)," Job

Order 60-430, Contract NAS9-17900 for the JSC, LESC-29702, JSC CR-185698,

December 1991.

NASA Open System Architecture Study, Lockheed Sanders, August 27, 1991

6-13

V

DISTRIBUTION LIST FOR LESC-30354-B
SGOAA STANDARD SPECIFICATION- CONTINUED

;i

:!

e

LASt. 86 S. COBB ST.,MARRIETTA, GA. 30063
RICK HARWELL, D/73-D2, ZONE 0685
JOHN WEAVER, D/73-D1, ZONE 0685
COX, JIM, D/73-MA ZONE 0081
REED, MIKE, D/73-MA, ZONE 0081
HUDSON, ROCKY, D/73-D2, ZONE 0685

LMSC, 1111 LOCKHEED WAY, SUNNYVALE, CA. 94088-3504
CHARLES TADJERAN, ORG. 62-31, BLDG 150
ROY PETIS, ORG. 73-12, BLDG 564
RANDY FLEMING, ORG. 73-12, BLDG 564
JOHN McMORRIS, ORG. 81-90, BLDG 157
DUWAYNE DICKSON, ORG. 80-06, BLDG 154
F. L. (FRED) LORY, ORG. 68-15, BLDG 104
MERLIN DORFMAN, ORG. 62-80, BLDG 563

LMSC (RD&D), 3251 HANOVER STREET, PALO ALTO, CA 94303-1191
BILL GUYTON, ORG. 92-20, BLDG 254E
RAY MUZZY, ORG. 90-21, BLDG. 254E
STEVE SHERMAN, ORG. 96-10, BLDG 254E
TOM ARKWRIGHT, ORG. 96-10, BLDG 254 E

LOCKHEED-SANDERS, 95 CANAL ST. NASHUA, NH 03061
RAY GARBOS (NAM5D-5002) JEFF E. SMITH (PTP2-B002)
JOHN MILLER (NCA 09-1106) DUNCAN MOORE (MER 24)
DAVE AIBEL WALT ZANDI

LADe, P. O. BOX 250, SUNLAND, CA. 91041
ALEX LOEWENTHAL, DEPT. 25-14, BLDG 311

LAD, P. O. BOX 17100, AUSTIN, TX. 78744-1016
CURTIS WELLS, ORG. T2-10, BLDG 30F

LOCKHEED CORP, 4500 PARK GRANADA BLVD, CALABASIS, CA 91399-0310
MICHAEL CARROLL
BART KRAWETZ

LAS Ontario, P. O. BOX 33, ONTARIO, CA. 91761-0033
C. R. (BOB) FENTON

LFWC, P. O. BOX 748, FORT WORTH, TX 76101
PAUL DANIEL, MAIL ZONE 2640

LSOC, 1100 LOCKHEED WAY, TITUSVILLE, FL 32780
L. J. (LEWIS) BOYD, ORG. 32-40, (Z/LSO-183)
ARTHUR EDWARDS, ORG. 11-42, BLDG. B/DX-D, Z/LSO-284)

DISTRIBUTION LIST FOR LESC-30354-B
SGOAA STANDARD SPECIFICATION- CONTINUED

BOEING CORP, PC BOX 3999, SEATTLE, WA 98124-2499
RICHARD FLANAGAN
AL COSGROVE

COMPUTING DEVICES INTL, 8800 QUEEN AVENUE SOUTH,
BLOOMINGTON, MN 55431
JIM JAMES, M/S BLCSID
DOCK ALLEN, M/S BLCW2S

WESTAR CORP, 6808 ACADEMY PKWY EAST, NE, BLDG C, SUITE 3,
ALBUQUERQUE, NM 87109
CHRIS DE LONG

HG USAF/SCS, 1250 AIR FORCE, PENTAGON, WASHINGTON, D. C. 20330-1250
COL ROBERT HANLON

ROCKWELL INT'L CORP.. 12214 LAKEWOOD BLVD., DOWNEY, CA. 90241
BURTON SMITH, M/S FA20

TRW, HOUSTON, TX 77058
DOUG RUE (NASA MAIL)

FAIRCHILD..... SPACE, 20;:301 CENTURY BLVD., GERMANTOWN, MD. 20874
JOHN SCHNEIDER, FLIGHT DATA SYSTEMS

E-SYSTEMS, P. O. BOX 12248, ST. PETERSBURG, FL. 33733-2248
JIM BRADY/MS29

E-SYSTEMS, P. O. BOX 660023, DALLAS, TEXAS 75266-0023
TIM SMITH/MC 4-47310

EER _YSTEMS IN_., 3027 MARINA BAY DR., SUITE 105,
LEAGUE CITY, TX 77573
RAY HARTENSTEIN

ROCKWELL INTL CORP.-ROCKETDYNE DIV., 6633 CANOGA AVE, P. O. BOX
7922, CANOGA PARK, CA. 91309-7922
ANTHONY THOMPSON, D1055-LB33

RESEARCH ANALYSIS AND MAINTENANCE INC., 512 AUDUBON ST.,
LEAGUE CITY, TX 77573
ROGER EVANS

M&AE, 1200 G. STREET, NW, SUITE 800, WASHINGTON DC, 20005
JOHN KELLER

McDONNELL-DOUGLAS _ORP., 1801
SANDA ANA, CA. 92705
TERRY RASSET/MS A208

E. St. ANDREW PLACE,

V

DISTRIBUTION LIST FOR LESC-30354-B
SGOAA STANDARD SPECIFICATION- CONCLUDED

HUGHES AIRCRAFT, P. O. BOX 92426, LOS ANGELES, CA. 90009-2426
JOHN GRIFFITH, RE/RI/B500

C.S. DRAPER LABS, 555 TECHNOLOGY SQUARE, CAMBRIDGE, MA 02139
J. BARTON DEWOLFE/MS 61

SBS ENGINEERING, 5550 MIDWAY PARK PLACE, NE,
ALBUQUERQUE, NM 87109
MR. DEREK HEAD

NAVMAR APPLIED SCIENCES CORP, 65 WEST STREET, SUITE C200,
WARMINSTER, PA 18974
MR. DOUG D'AVINO

ASE/ENAS, WRIGHT-PATTERSON AFB, OH 45433
FRED WILSON

MR. MARTIN FREED, (ASC/ENASC), 5565 BARBANNA LANE,
DAYTON, OH 45415

A_(_/YFMXT, WRIGHT-PATTERSON AFB, OH 45433
MR. BYRON STEPHENS

AMSEL-RD-CZ-TS-1, FT. MONMOUTH, NJ 07703
DOUG JOHNSON/ACC #66

NAVAL AIR WARFARE CENTER, AIRCRAFT DIVISION,
WARMINSTER, PA 18974-0591
RICHARD J. PARISEAU/CODE 102A
RICHARD S. MEJZAK/CODE 2021

TEXAS INSTRUMENTS, 6550 CHASE OAKS BLVD, PO BOX 869305,
PIANO, TX 75086
DR. CHUCK ROARK/MS 8481

HONEYWELL INC, 3660 TECHNOLOGY DR, MINNEAPOLIS, MN 55418
MR. RON FRAZZINI

PARAMAX SYSTEMS (_ORP, PO BOX 64525, ST PAUL, MN 55164-0525
MR. DARYLE HAMLIN/MS U1F15

CTA INC. SUITE 310, 18333 EGRET BAY BLVD, HOUSTON, TX 77058
MR. DAVID COOPER

MITRE CORPORATION, 202 BURLINGTON ROAD, BEDFORD, MA 01730-1420
WILLIAM T. BRANDOM/D-96
JACK SHAY/DIRECTOR OF SYSTEMS DEVELOPMENT

NOOSE TGCC, 1907 BELLMEADE, HOUSTON, TX 77019
ED SMITH

DISTRIBUTION LIST FOR LESC-30354-B

SPACE GENERIC OPEN AVIONICS ARCHITECTURE

(SGOAA) STANDARD SPECIFICATION

NASA

EK111/D. M. PRUETT (10)
PT4/E. M. FRIDGE (5)
AMES/E. S. CHEVERS (5)
JM-2/S. McDONALD (30)
EK3/J. BELL (3)
EK3/D. JIH

EG1/D. P. BROWN
EG 111/K. J. COX
JPL/MS 301-235/A. HOOKE
EK3/R. S. DAVIS

LESC

C18/J. R. THRASHER
C18/E. A. STREET
C18/R. E. SCHINDELER
C18/J. STOVALL (10)
C106/P. G. O'NEIL
C07/J. E. MOORE
C29/P. HOPKINS
B11/G. J. MOORMAN
C87/M. W. BRADWAY

(FOR SATWG)

C18/JEAN FOWLER
(MASTER + 2 COPIES)

C18/G. L. CLOUEI-IE

C18/R. B. WRAY (10)
C18/M. W. WALRATH
C18/B. L. DOECKEL
C18/(3. GERCEK
C83/S. J.THOMAS
C22/D. CRAVEY

B16/LESC LIBRARY (2)

LESC. 144 RESEARCH DRIVE, HAMPTON, VA. 23666
RAY WENDL PHIL MARTIN

_;AE/ASD. SAE INTERNATIONAL, 400 COMMONWEALTH AVE,
WARRENDALE, PA. 15096
BARBARA ROTH (FILE) RICH VANDAME

MITRE, 1120 NASA ROAD 1, HOUSTON, TX 77058
STEVE BAYER (2)

UHOL, UNIVERSITY OF HOUSTON - CLEAR LAKE, 2700 BAY AREA BLVD. -
BOX 444, HOUSTON, TEXAS 77058
CHARLES HARDWlCH

NIST/CSL, FRITZ SCHULTZ, BLDG 225, ROOM B266, GATHISBURG, MD. 20899

ROME LABS/OCTS, GRIFFIS AFB, NY 13441-5700
RICHARD WOOD

